1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. 4 * Copyright (c) 2001 Intel Corp. 5 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> 6 * Copyright (c) 2002 NEC Corp. 7 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> 8 * Copyright (c) 2004 Silicon Graphics, Inc 9 * Russ Anderson <rja@sgi.com> 10 * Jesse Barnes <jbarnes@sgi.com> 11 * Jack Steiner <steiner@sgi.com> 12 */ 13 14 /* 15 * Platform initialization for Discontig Memory 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/nmi.h> 21 #include <linux/swap.h> 22 #include <linux/bootmem.h> 23 #include <linux/memblock.h> 24 #include <linux/acpi.h> 25 #include <linux/efi.h> 26 #include <linux/nodemask.h> 27 #include <linux/slab.h> 28 #include <asm/pgalloc.h> 29 #include <asm/tlb.h> 30 #include <asm/meminit.h> 31 #include <asm/numa.h> 32 #include <asm/sections.h> 33 34 /* 35 * Track per-node information needed to setup the boot memory allocator, the 36 * per-node areas, and the real VM. 37 */ 38 struct early_node_data { 39 struct ia64_node_data *node_data; 40 unsigned long pernode_addr; 41 unsigned long pernode_size; 42 unsigned long min_pfn; 43 unsigned long max_pfn; 44 }; 45 46 static struct early_node_data mem_data[MAX_NUMNODES] __initdata; 47 static nodemask_t memory_less_mask __initdata; 48 49 pg_data_t *pgdat_list[MAX_NUMNODES]; 50 51 /* 52 * To prevent cache aliasing effects, align per-node structures so that they 53 * start at addresses that are strided by node number. 54 */ 55 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024) 56 #define NODEDATA_ALIGN(addr, node) \ 57 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \ 58 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1))) 59 60 /** 61 * build_node_maps - callback to setup mem_data structs for each node 62 * @start: physical start of range 63 * @len: length of range 64 * @node: node where this range resides 65 * 66 * Detect extents of each piece of memory that we wish to 67 * treat as a virtually contiguous block (i.e. each node). Each such block 68 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down 69 * if necessary. Any non-existent pages will simply be part of the virtual 70 * memmap. 71 */ 72 static int __init build_node_maps(unsigned long start, unsigned long len, 73 int node) 74 { 75 unsigned long spfn, epfn, end = start + len; 76 77 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; 78 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT; 79 80 if (!mem_data[node].min_pfn) { 81 mem_data[node].min_pfn = spfn; 82 mem_data[node].max_pfn = epfn; 83 } else { 84 mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn); 85 mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn); 86 } 87 88 return 0; 89 } 90 91 /** 92 * early_nr_cpus_node - return number of cpus on a given node 93 * @node: node to check 94 * 95 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because 96 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been 97 * called yet. Note that node 0 will also count all non-existent cpus. 98 */ 99 static int __meminit early_nr_cpus_node(int node) 100 { 101 int cpu, n = 0; 102 103 for_each_possible_early_cpu(cpu) 104 if (node == node_cpuid[cpu].nid) 105 n++; 106 107 return n; 108 } 109 110 /** 111 * compute_pernodesize - compute size of pernode data 112 * @node: the node id. 113 */ 114 static unsigned long __meminit compute_pernodesize(int node) 115 { 116 unsigned long pernodesize = 0, cpus; 117 118 cpus = early_nr_cpus_node(node); 119 pernodesize += PERCPU_PAGE_SIZE * cpus; 120 pernodesize += node * L1_CACHE_BYTES; 121 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 122 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 123 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 124 pernodesize = PAGE_ALIGN(pernodesize); 125 return pernodesize; 126 } 127 128 /** 129 * per_cpu_node_setup - setup per-cpu areas on each node 130 * @cpu_data: per-cpu area on this node 131 * @node: node to setup 132 * 133 * Copy the static per-cpu data into the region we just set aside and then 134 * setup __per_cpu_offset for each CPU on this node. Return a pointer to 135 * the end of the area. 136 */ 137 static void *per_cpu_node_setup(void *cpu_data, int node) 138 { 139 #ifdef CONFIG_SMP 140 int cpu; 141 142 for_each_possible_early_cpu(cpu) { 143 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start; 144 145 if (node != node_cpuid[cpu].nid) 146 continue; 147 148 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start); 149 __per_cpu_offset[cpu] = (char *)__va(cpu_data) - 150 __per_cpu_start; 151 152 /* 153 * percpu area for cpu0 is moved from the __init area 154 * which is setup by head.S and used till this point. 155 * Update ar.k3. This move is ensures that percpu 156 * area for cpu0 is on the correct node and its 157 * virtual address isn't insanely far from other 158 * percpu areas which is important for congruent 159 * percpu allocator. 160 */ 161 if (cpu == 0) 162 ia64_set_kr(IA64_KR_PER_CPU_DATA, 163 (unsigned long)cpu_data - 164 (unsigned long)__per_cpu_start); 165 166 cpu_data += PERCPU_PAGE_SIZE; 167 } 168 #endif 169 return cpu_data; 170 } 171 172 #ifdef CONFIG_SMP 173 /** 174 * setup_per_cpu_areas - setup percpu areas 175 * 176 * Arch code has already allocated and initialized percpu areas. All 177 * this function has to do is to teach the determined layout to the 178 * dynamic percpu allocator, which happens to be more complex than 179 * creating whole new ones using helpers. 180 */ 181 void __init setup_per_cpu_areas(void) 182 { 183 struct pcpu_alloc_info *ai; 184 struct pcpu_group_info *uninitialized_var(gi); 185 unsigned int *cpu_map; 186 void *base; 187 unsigned long base_offset; 188 unsigned int cpu; 189 ssize_t static_size, reserved_size, dyn_size; 190 int node, prev_node, unit, nr_units, rc; 191 192 ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids); 193 if (!ai) 194 panic("failed to allocate pcpu_alloc_info"); 195 cpu_map = ai->groups[0].cpu_map; 196 197 /* determine base */ 198 base = (void *)ULONG_MAX; 199 for_each_possible_cpu(cpu) 200 base = min(base, 201 (void *)(__per_cpu_offset[cpu] + __per_cpu_start)); 202 base_offset = (void *)__per_cpu_start - base; 203 204 /* build cpu_map, units are grouped by node */ 205 unit = 0; 206 for_each_node(node) 207 for_each_possible_cpu(cpu) 208 if (node == node_cpuid[cpu].nid) 209 cpu_map[unit++] = cpu; 210 nr_units = unit; 211 212 /* set basic parameters */ 213 static_size = __per_cpu_end - __per_cpu_start; 214 reserved_size = PERCPU_MODULE_RESERVE; 215 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; 216 if (dyn_size < 0) 217 panic("percpu area overflow static=%zd reserved=%zd\n", 218 static_size, reserved_size); 219 220 ai->static_size = static_size; 221 ai->reserved_size = reserved_size; 222 ai->dyn_size = dyn_size; 223 ai->unit_size = PERCPU_PAGE_SIZE; 224 ai->atom_size = PAGE_SIZE; 225 ai->alloc_size = PERCPU_PAGE_SIZE; 226 227 /* 228 * CPUs are put into groups according to node. Walk cpu_map 229 * and create new groups at node boundaries. 230 */ 231 prev_node = -1; 232 ai->nr_groups = 0; 233 for (unit = 0; unit < nr_units; unit++) { 234 cpu = cpu_map[unit]; 235 node = node_cpuid[cpu].nid; 236 237 if (node == prev_node) { 238 gi->nr_units++; 239 continue; 240 } 241 prev_node = node; 242 243 gi = &ai->groups[ai->nr_groups++]; 244 gi->nr_units = 1; 245 gi->base_offset = __per_cpu_offset[cpu] + base_offset; 246 gi->cpu_map = &cpu_map[unit]; 247 } 248 249 rc = pcpu_setup_first_chunk(ai, base); 250 if (rc) 251 panic("failed to setup percpu area (err=%d)", rc); 252 253 pcpu_free_alloc_info(ai); 254 } 255 #endif 256 257 /** 258 * fill_pernode - initialize pernode data. 259 * @node: the node id. 260 * @pernode: physical address of pernode data 261 * @pernodesize: size of the pernode data 262 */ 263 static void __init fill_pernode(int node, unsigned long pernode, 264 unsigned long pernodesize) 265 { 266 void *cpu_data; 267 int cpus = early_nr_cpus_node(node); 268 269 mem_data[node].pernode_addr = pernode; 270 mem_data[node].pernode_size = pernodesize; 271 memset(__va(pernode), 0, pernodesize); 272 273 cpu_data = (void *)pernode; 274 pernode += PERCPU_PAGE_SIZE * cpus; 275 pernode += node * L1_CACHE_BYTES; 276 277 pgdat_list[node] = __va(pernode); 278 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 279 280 mem_data[node].node_data = __va(pernode); 281 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 282 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 283 284 cpu_data = per_cpu_node_setup(cpu_data, node); 285 286 return; 287 } 288 289 /** 290 * find_pernode_space - allocate memory for memory map and per-node structures 291 * @start: physical start of range 292 * @len: length of range 293 * @node: node where this range resides 294 * 295 * This routine reserves space for the per-cpu data struct, the list of 296 * pg_data_ts and the per-node data struct. Each node will have something like 297 * the following in the first chunk of addr. space large enough to hold it. 298 * 299 * ________________________ 300 * | | 301 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first 302 * | PERCPU_PAGE_SIZE * | start and length big enough 303 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. 304 * |------------------------| 305 * | local pg_data_t * | 306 * |------------------------| 307 * | local ia64_node_data | 308 * |------------------------| 309 * | ??? | 310 * |________________________| 311 * 312 * Once this space has been set aside, the bootmem maps are initialized. We 313 * could probably move the allocation of the per-cpu and ia64_node_data space 314 * outside of this function and use alloc_bootmem_node(), but doing it here 315 * is straightforward and we get the alignments we want so... 316 */ 317 static int __init find_pernode_space(unsigned long start, unsigned long len, 318 int node) 319 { 320 unsigned long spfn, epfn; 321 unsigned long pernodesize = 0, pernode; 322 323 spfn = start >> PAGE_SHIFT; 324 epfn = (start + len) >> PAGE_SHIFT; 325 326 /* 327 * Make sure this memory falls within this node's usable memory 328 * since we may have thrown some away in build_maps(). 329 */ 330 if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn) 331 return 0; 332 333 /* Don't setup this node's local space twice... */ 334 if (mem_data[node].pernode_addr) 335 return 0; 336 337 /* 338 * Calculate total size needed, incl. what's necessary 339 * for good alignment and alias prevention. 340 */ 341 pernodesize = compute_pernodesize(node); 342 pernode = NODEDATA_ALIGN(start, node); 343 344 /* Is this range big enough for what we want to store here? */ 345 if (start + len > (pernode + pernodesize)) 346 fill_pernode(node, pernode, pernodesize); 347 348 return 0; 349 } 350 351 /** 352 * reserve_pernode_space - reserve memory for per-node space 353 * 354 * Reserve the space used by the bootmem maps & per-node space in the boot 355 * allocator so that when we actually create the real mem maps we don't 356 * use their memory. 357 */ 358 static void __init reserve_pernode_space(void) 359 { 360 unsigned long base, size; 361 int node; 362 363 for_each_online_node(node) { 364 if (node_isset(node, memory_less_mask)) 365 continue; 366 367 /* Now the per-node space */ 368 size = mem_data[node].pernode_size; 369 base = __pa(mem_data[node].pernode_addr); 370 memblock_reserve(base, size); 371 } 372 } 373 374 static void __meminit scatter_node_data(void) 375 { 376 pg_data_t **dst; 377 int node; 378 379 /* 380 * for_each_online_node() can't be used at here. 381 * node_online_map is not set for hot-added nodes at this time, 382 * because we are halfway through initialization of the new node's 383 * structures. If for_each_online_node() is used, a new node's 384 * pg_data_ptrs will be not initialized. Instead of using it, 385 * pgdat_list[] is checked. 386 */ 387 for_each_node(node) { 388 if (pgdat_list[node]) { 389 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs; 390 memcpy(dst, pgdat_list, sizeof(pgdat_list)); 391 } 392 } 393 } 394 395 /** 396 * initialize_pernode_data - fixup per-cpu & per-node pointers 397 * 398 * Each node's per-node area has a copy of the global pg_data_t list, so 399 * we copy that to each node here, as well as setting the per-cpu pointer 400 * to the local node data structure. The active_cpus field of the per-node 401 * structure gets setup by the platform_cpu_init() function later. 402 */ 403 static void __init initialize_pernode_data(void) 404 { 405 int cpu, node; 406 407 scatter_node_data(); 408 409 #ifdef CONFIG_SMP 410 /* Set the node_data pointer for each per-cpu struct */ 411 for_each_possible_early_cpu(cpu) { 412 node = node_cpuid[cpu].nid; 413 per_cpu(ia64_cpu_info, cpu).node_data = 414 mem_data[node].node_data; 415 } 416 #else 417 { 418 struct cpuinfo_ia64 *cpu0_cpu_info; 419 cpu = 0; 420 node = node_cpuid[cpu].nid; 421 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + 422 ((char *)&ia64_cpu_info - __per_cpu_start)); 423 cpu0_cpu_info->node_data = mem_data[node].node_data; 424 } 425 #endif /* CONFIG_SMP */ 426 } 427 428 /** 429 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit 430 * node but fall back to any other node when __alloc_bootmem_node fails 431 * for best. 432 * @nid: node id 433 * @pernodesize: size of this node's pernode data 434 */ 435 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize) 436 { 437 void *ptr = NULL; 438 u8 best = 0xff; 439 int bestnode = -1, node, anynode = 0; 440 441 for_each_online_node(node) { 442 if (node_isset(node, memory_less_mask)) 443 continue; 444 else if (node_distance(nid, node) < best) { 445 best = node_distance(nid, node); 446 bestnode = node; 447 } 448 anynode = node; 449 } 450 451 if (bestnode == -1) 452 bestnode = anynode; 453 454 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize, 455 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 456 457 return ptr; 458 } 459 460 /** 461 * memory_less_nodes - allocate and initialize CPU only nodes pernode 462 * information. 463 */ 464 static void __init memory_less_nodes(void) 465 { 466 unsigned long pernodesize; 467 void *pernode; 468 int node; 469 470 for_each_node_mask(node, memory_less_mask) { 471 pernodesize = compute_pernodesize(node); 472 pernode = memory_less_node_alloc(node, pernodesize); 473 fill_pernode(node, __pa(pernode), pernodesize); 474 } 475 476 return; 477 } 478 479 /** 480 * find_memory - walk the EFI memory map and setup the bootmem allocator 481 * 482 * Called early in boot to setup the bootmem allocator, and to 483 * allocate the per-cpu and per-node structures. 484 */ 485 void __init find_memory(void) 486 { 487 int node; 488 489 reserve_memory(); 490 efi_memmap_walk(filter_memory, register_active_ranges); 491 492 if (num_online_nodes() == 0) { 493 printk(KERN_ERR "node info missing!\n"); 494 node_set_online(0); 495 } 496 497 nodes_or(memory_less_mask, memory_less_mask, node_online_map); 498 min_low_pfn = -1; 499 max_low_pfn = 0; 500 501 /* These actually end up getting called by call_pernode_memory() */ 502 efi_memmap_walk(filter_rsvd_memory, build_node_maps); 503 efi_memmap_walk(filter_rsvd_memory, find_pernode_space); 504 efi_memmap_walk(find_max_min_low_pfn, NULL); 505 506 for_each_online_node(node) 507 if (mem_data[node].min_pfn) 508 node_clear(node, memory_less_mask); 509 510 reserve_pernode_space(); 511 memory_less_nodes(); 512 initialize_pernode_data(); 513 514 max_pfn = max_low_pfn; 515 516 find_initrd(); 517 } 518 519 #ifdef CONFIG_SMP 520 /** 521 * per_cpu_init - setup per-cpu variables 522 * 523 * find_pernode_space() does most of this already, we just need to set 524 * local_per_cpu_offset 525 */ 526 void *per_cpu_init(void) 527 { 528 int cpu; 529 static int first_time = 1; 530 531 if (first_time) { 532 first_time = 0; 533 for_each_possible_early_cpu(cpu) 534 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; 535 } 536 537 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 538 } 539 #endif /* CONFIG_SMP */ 540 541 /** 542 * call_pernode_memory - use SRAT to call callback functions with node info 543 * @start: physical start of range 544 * @len: length of range 545 * @arg: function to call for each range 546 * 547 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find 548 * out to which node a block of memory belongs. Ignore memory that we cannot 549 * identify, and split blocks that run across multiple nodes. 550 * 551 * Take this opportunity to round the start address up and the end address 552 * down to page boundaries. 553 */ 554 void call_pernode_memory(unsigned long start, unsigned long len, void *arg) 555 { 556 unsigned long rs, re, end = start + len; 557 void (*func)(unsigned long, unsigned long, int); 558 int i; 559 560 start = PAGE_ALIGN(start); 561 end &= PAGE_MASK; 562 if (start >= end) 563 return; 564 565 func = arg; 566 567 if (!num_node_memblks) { 568 /* No SRAT table, so assume one node (node 0) */ 569 if (start < end) 570 (*func)(start, end - start, 0); 571 return; 572 } 573 574 for (i = 0; i < num_node_memblks; i++) { 575 rs = max(start, node_memblk[i].start_paddr); 576 re = min(end, node_memblk[i].start_paddr + 577 node_memblk[i].size); 578 579 if (rs < re) 580 (*func)(rs, re - rs, node_memblk[i].nid); 581 582 if (re == end) 583 break; 584 } 585 } 586 587 /** 588 * paging_init - setup page tables 589 * 590 * paging_init() sets up the page tables for each node of the system and frees 591 * the bootmem allocator memory for general use. 592 */ 593 void __init paging_init(void) 594 { 595 unsigned long max_dma; 596 unsigned long pfn_offset = 0; 597 unsigned long max_pfn = 0; 598 int node; 599 unsigned long max_zone_pfns[MAX_NR_ZONES]; 600 601 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; 602 603 sparse_memory_present_with_active_regions(MAX_NUMNODES); 604 sparse_init(); 605 606 #ifdef CONFIG_VIRTUAL_MEM_MAP 607 VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * 608 sizeof(struct page)); 609 vmem_map = (struct page *) VMALLOC_END; 610 efi_memmap_walk(create_mem_map_page_table, NULL); 611 printk("Virtual mem_map starts at 0x%p\n", vmem_map); 612 #endif 613 614 for_each_online_node(node) { 615 pfn_offset = mem_data[node].min_pfn; 616 617 #ifdef CONFIG_VIRTUAL_MEM_MAP 618 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; 619 #endif 620 if (mem_data[node].max_pfn > max_pfn) 621 max_pfn = mem_data[node].max_pfn; 622 } 623 624 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 625 #ifdef CONFIG_ZONE_DMA32 626 max_zone_pfns[ZONE_DMA32] = max_dma; 627 #endif 628 max_zone_pfns[ZONE_NORMAL] = max_pfn; 629 free_area_init_nodes(max_zone_pfns); 630 631 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); 632 } 633 634 #ifdef CONFIG_MEMORY_HOTPLUG 635 pg_data_t *arch_alloc_nodedata(int nid) 636 { 637 unsigned long size = compute_pernodesize(nid); 638 639 return kzalloc(size, GFP_KERNEL); 640 } 641 642 void arch_free_nodedata(pg_data_t *pgdat) 643 { 644 kfree(pgdat); 645 } 646 647 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat) 648 { 649 pgdat_list[update_node] = update_pgdat; 650 scatter_node_data(); 651 } 652 #endif 653 654 #ifdef CONFIG_SPARSEMEM_VMEMMAP 655 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 656 struct vmem_altmap *altmap) 657 { 658 return vmemmap_populate_basepages(start, end, node); 659 } 660 661 void vmemmap_free(unsigned long start, unsigned long end, 662 struct vmem_altmap *altmap) 663 { 664 } 665 #endif 666