xref: /openbmc/linux/arch/ia64/mm/discontig.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
4  * Copyright (c) 2001 Intel Corp.
5  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
6  * Copyright (c) 2002 NEC Corp.
7  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
8  * Copyright (c) 2004 Silicon Graphics, Inc
9  *	Russ Anderson <rja@sgi.com>
10  *	Jesse Barnes <jbarnes@sgi.com>
11  *	Jack Steiner <steiner@sgi.com>
12  */
13 
14 /*
15  * Platform initialization for Discontig Memory
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22 #include <linux/memblock.h>
23 #include <linux/acpi.h>
24 #include <linux/efi.h>
25 #include <linux/nodemask.h>
26 #include <linux/slab.h>
27 #include <asm/efi.h>
28 #include <asm/tlb.h>
29 #include <asm/meminit.h>
30 #include <asm/numa.h>
31 #include <asm/sections.h>
32 
33 /*
34  * Track per-node information needed to setup the boot memory allocator, the
35  * per-node areas, and the real VM.
36  */
37 struct early_node_data {
38 	struct ia64_node_data *node_data;
39 	unsigned long pernode_addr;
40 	unsigned long pernode_size;
41 	unsigned long min_pfn;
42 	unsigned long max_pfn;
43 };
44 
45 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
46 static nodemask_t memory_less_mask __initdata;
47 
48 pg_data_t *pgdat_list[MAX_NUMNODES];
49 
50 /*
51  * To prevent cache aliasing effects, align per-node structures so that they
52  * start at addresses that are strided by node number.
53  */
54 #define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
55 #define NODEDATA_ALIGN(addr, node)						\
56 	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
57 	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
58 
59 /**
60  * build_node_maps - callback to setup mem_data structs for each node
61  * @start: physical start of range
62  * @len: length of range
63  * @node: node where this range resides
64  *
65  * Detect extents of each piece of memory that we wish to
66  * treat as a virtually contiguous block (i.e. each node). Each such block
67  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
68  * if necessary.  Any non-existent pages will simply be part of the virtual
69  * memmap.
70  */
71 static int __init build_node_maps(unsigned long start, unsigned long len,
72 				  int node)
73 {
74 	unsigned long spfn, epfn, end = start + len;
75 
76 	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
77 	spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
78 
79 	if (!mem_data[node].min_pfn) {
80 		mem_data[node].min_pfn = spfn;
81 		mem_data[node].max_pfn = epfn;
82 	} else {
83 		mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
84 		mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
85 	}
86 
87 	return 0;
88 }
89 
90 /**
91  * early_nr_cpus_node - return number of cpus on a given node
92  * @node: node to check
93  *
94  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
95  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
96  * called yet.  Note that node 0 will also count all non-existent cpus.
97  */
98 static int early_nr_cpus_node(int node)
99 {
100 	int cpu, n = 0;
101 
102 	for_each_possible_early_cpu(cpu)
103 		if (node == node_cpuid[cpu].nid)
104 			n++;
105 
106 	return n;
107 }
108 
109 /**
110  * compute_pernodesize - compute size of pernode data
111  * @node: the node id.
112  */
113 static unsigned long compute_pernodesize(int node)
114 {
115 	unsigned long pernodesize = 0, cpus;
116 
117 	cpus = early_nr_cpus_node(node);
118 	pernodesize += PERCPU_PAGE_SIZE * cpus;
119 	pernodesize += node * L1_CACHE_BYTES;
120 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
121 	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
122 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
123 	pernodesize = PAGE_ALIGN(pernodesize);
124 	return pernodesize;
125 }
126 
127 /**
128  * per_cpu_node_setup - setup per-cpu areas on each node
129  * @cpu_data: per-cpu area on this node
130  * @node: node to setup
131  *
132  * Copy the static per-cpu data into the region we just set aside and then
133  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
134  * the end of the area.
135  */
136 static void *per_cpu_node_setup(void *cpu_data, int node)
137 {
138 #ifdef CONFIG_SMP
139 	int cpu;
140 
141 	for_each_possible_early_cpu(cpu) {
142 		void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
143 
144 		if (node != node_cpuid[cpu].nid)
145 			continue;
146 
147 		memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
148 		__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
149 			__per_cpu_start;
150 
151 		/*
152 		 * percpu area for cpu0 is moved from the __init area
153 		 * which is setup by head.S and used till this point.
154 		 * Update ar.k3.  This move is ensures that percpu
155 		 * area for cpu0 is on the correct node and its
156 		 * virtual address isn't insanely far from other
157 		 * percpu areas which is important for congruent
158 		 * percpu allocator.
159 		 */
160 		if (cpu == 0)
161 			ia64_set_kr(IA64_KR_PER_CPU_DATA,
162 				    (unsigned long)cpu_data -
163 				    (unsigned long)__per_cpu_start);
164 
165 		cpu_data += PERCPU_PAGE_SIZE;
166 	}
167 #endif
168 	return cpu_data;
169 }
170 
171 #ifdef CONFIG_SMP
172 /**
173  * setup_per_cpu_areas - setup percpu areas
174  *
175  * Arch code has already allocated and initialized percpu areas.  All
176  * this function has to do is to teach the determined layout to the
177  * dynamic percpu allocator, which happens to be more complex than
178  * creating whole new ones using helpers.
179  */
180 void __init setup_per_cpu_areas(void)
181 {
182 	struct pcpu_alloc_info *ai;
183 	struct pcpu_group_info *gi;
184 	unsigned int *cpu_map;
185 	void *base;
186 	unsigned long base_offset;
187 	unsigned int cpu;
188 	ssize_t static_size, reserved_size, dyn_size;
189 	int node, prev_node, unit, nr_units;
190 
191 	ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
192 	if (!ai)
193 		panic("failed to allocate pcpu_alloc_info");
194 	cpu_map = ai->groups[0].cpu_map;
195 
196 	/* determine base */
197 	base = (void *)ULONG_MAX;
198 	for_each_possible_cpu(cpu)
199 		base = min(base,
200 			   (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
201 	base_offset = (void *)__per_cpu_start - base;
202 
203 	/* build cpu_map, units are grouped by node */
204 	unit = 0;
205 	for_each_node(node)
206 		for_each_possible_cpu(cpu)
207 			if (node == node_cpuid[cpu].nid)
208 				cpu_map[unit++] = cpu;
209 	nr_units = unit;
210 
211 	/* set basic parameters */
212 	static_size = __per_cpu_end - __per_cpu_start;
213 	reserved_size = PERCPU_MODULE_RESERVE;
214 	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
215 	if (dyn_size < 0)
216 		panic("percpu area overflow static=%zd reserved=%zd\n",
217 		      static_size, reserved_size);
218 
219 	ai->static_size		= static_size;
220 	ai->reserved_size	= reserved_size;
221 	ai->dyn_size		= dyn_size;
222 	ai->unit_size		= PERCPU_PAGE_SIZE;
223 	ai->atom_size		= PAGE_SIZE;
224 	ai->alloc_size		= PERCPU_PAGE_SIZE;
225 
226 	/*
227 	 * CPUs are put into groups according to node.  Walk cpu_map
228 	 * and create new groups at node boundaries.
229 	 */
230 	prev_node = NUMA_NO_NODE;
231 	ai->nr_groups = 0;
232 	for (unit = 0; unit < nr_units; unit++) {
233 		cpu = cpu_map[unit];
234 		node = node_cpuid[cpu].nid;
235 
236 		if (node == prev_node) {
237 			gi->nr_units++;
238 			continue;
239 		}
240 		prev_node = node;
241 
242 		gi = &ai->groups[ai->nr_groups++];
243 		gi->nr_units		= 1;
244 		gi->base_offset		= __per_cpu_offset[cpu] + base_offset;
245 		gi->cpu_map		= &cpu_map[unit];
246 	}
247 
248 	pcpu_setup_first_chunk(ai, base);
249 	pcpu_free_alloc_info(ai);
250 }
251 #endif
252 
253 /**
254  * fill_pernode - initialize pernode data.
255  * @node: the node id.
256  * @pernode: physical address of pernode data
257  * @pernodesize: size of the pernode data
258  */
259 static void __init fill_pernode(int node, unsigned long pernode,
260 	unsigned long pernodesize)
261 {
262 	void *cpu_data;
263 	int cpus = early_nr_cpus_node(node);
264 
265 	mem_data[node].pernode_addr = pernode;
266 	mem_data[node].pernode_size = pernodesize;
267 	memset(__va(pernode), 0, pernodesize);
268 
269 	cpu_data = (void *)pernode;
270 	pernode += PERCPU_PAGE_SIZE * cpus;
271 	pernode += node * L1_CACHE_BYTES;
272 
273 	pgdat_list[node] = __va(pernode);
274 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
275 
276 	mem_data[node].node_data = __va(pernode);
277 	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
278 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
279 
280 	cpu_data = per_cpu_node_setup(cpu_data, node);
281 
282 	return;
283 }
284 
285 /**
286  * find_pernode_space - allocate memory for memory map and per-node structures
287  * @start: physical start of range
288  * @len: length of range
289  * @node: node where this range resides
290  *
291  * This routine reserves space for the per-cpu data struct, the list of
292  * pg_data_ts and the per-node data struct.  Each node will have something like
293  * the following in the first chunk of addr. space large enough to hold it.
294  *
295  *    ________________________
296  *   |                        |
297  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
298  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
299  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
300  *   |------------------------|
301  *   |   local pg_data_t *    |
302  *   |------------------------|
303  *   |  local ia64_node_data  |
304  *   |------------------------|
305  *   |          ???           |
306  *   |________________________|
307  *
308  * Once this space has been set aside, the bootmem maps are initialized.  We
309  * could probably move the allocation of the per-cpu and ia64_node_data space
310  * outside of this function and use alloc_bootmem_node(), but doing it here
311  * is straightforward and we get the alignments we want so...
312  */
313 static int __init find_pernode_space(unsigned long start, unsigned long len,
314 				     int node)
315 {
316 	unsigned long spfn, epfn;
317 	unsigned long pernodesize = 0, pernode;
318 
319 	spfn = start >> PAGE_SHIFT;
320 	epfn = (start + len) >> PAGE_SHIFT;
321 
322 	/*
323 	 * Make sure this memory falls within this node's usable memory
324 	 * since we may have thrown some away in build_maps().
325 	 */
326 	if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
327 		return 0;
328 
329 	/* Don't setup this node's local space twice... */
330 	if (mem_data[node].pernode_addr)
331 		return 0;
332 
333 	/*
334 	 * Calculate total size needed, incl. what's necessary
335 	 * for good alignment and alias prevention.
336 	 */
337 	pernodesize = compute_pernodesize(node);
338 	pernode = NODEDATA_ALIGN(start, node);
339 
340 	/* Is this range big enough for what we want to store here? */
341 	if (start + len > (pernode + pernodesize))
342 		fill_pernode(node, pernode, pernodesize);
343 
344 	return 0;
345 }
346 
347 /**
348  * reserve_pernode_space - reserve memory for per-node space
349  *
350  * Reserve the space used by the bootmem maps & per-node space in the boot
351  * allocator so that when we actually create the real mem maps we don't
352  * use their memory.
353  */
354 static void __init reserve_pernode_space(void)
355 {
356 	unsigned long base, size;
357 	int node;
358 
359 	for_each_online_node(node) {
360 		if (node_isset(node, memory_less_mask))
361 			continue;
362 
363 		/* Now the per-node space */
364 		size = mem_data[node].pernode_size;
365 		base = __pa(mem_data[node].pernode_addr);
366 		memblock_reserve(base, size);
367 	}
368 }
369 
370 static void scatter_node_data(void)
371 {
372 	pg_data_t **dst;
373 	int node;
374 
375 	/*
376 	 * for_each_online_node() can't be used at here.
377 	 * node_online_map is not set for hot-added nodes at this time,
378 	 * because we are halfway through initialization of the new node's
379 	 * structures.  If for_each_online_node() is used, a new node's
380 	 * pg_data_ptrs will be not initialized. Instead of using it,
381 	 * pgdat_list[] is checked.
382 	 */
383 	for_each_node(node) {
384 		if (pgdat_list[node]) {
385 			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
386 			memcpy(dst, pgdat_list, sizeof(pgdat_list));
387 		}
388 	}
389 }
390 
391 /**
392  * initialize_pernode_data - fixup per-cpu & per-node pointers
393  *
394  * Each node's per-node area has a copy of the global pg_data_t list, so
395  * we copy that to each node here, as well as setting the per-cpu pointer
396  * to the local node data structure.
397  */
398 static void __init initialize_pernode_data(void)
399 {
400 	int cpu, node;
401 
402 	scatter_node_data();
403 
404 #ifdef CONFIG_SMP
405 	/* Set the node_data pointer for each per-cpu struct */
406 	for_each_possible_early_cpu(cpu) {
407 		node = node_cpuid[cpu].nid;
408 		per_cpu(ia64_cpu_info, cpu).node_data =
409 			mem_data[node].node_data;
410 	}
411 #else
412 	{
413 		struct cpuinfo_ia64 *cpu0_cpu_info;
414 		cpu = 0;
415 		node = node_cpuid[cpu].nid;
416 		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
417 			((char *)&ia64_cpu_info - __per_cpu_start));
418 		cpu0_cpu_info->node_data = mem_data[node].node_data;
419 	}
420 #endif /* CONFIG_SMP */
421 }
422 
423 /**
424  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
425  * 	node but fall back to any other node when __alloc_bootmem_node fails
426  *	for best.
427  * @nid: node id
428  * @pernodesize: size of this node's pernode data
429  */
430 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
431 {
432 	void *ptr = NULL;
433 	u8 best = 0xff;
434 	int bestnode = NUMA_NO_NODE, node, anynode = 0;
435 
436 	for_each_online_node(node) {
437 		if (node_isset(node, memory_less_mask))
438 			continue;
439 		else if (node_distance(nid, node) < best) {
440 			best = node_distance(nid, node);
441 			bestnode = node;
442 		}
443 		anynode = node;
444 	}
445 
446 	if (bestnode == NUMA_NO_NODE)
447 		bestnode = anynode;
448 
449 	ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
450 				     __pa(MAX_DMA_ADDRESS),
451 				     MEMBLOCK_ALLOC_ACCESSIBLE,
452 				     bestnode);
453 	if (!ptr)
454 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n",
455 		      __func__, pernodesize, PERCPU_PAGE_SIZE, bestnode,
456 		      __pa(MAX_DMA_ADDRESS));
457 
458 	return ptr;
459 }
460 
461 /**
462  * memory_less_nodes - allocate and initialize CPU only nodes pernode
463  *	information.
464  */
465 static void __init memory_less_nodes(void)
466 {
467 	unsigned long pernodesize;
468 	void *pernode;
469 	int node;
470 
471 	for_each_node_mask(node, memory_less_mask) {
472 		pernodesize = compute_pernodesize(node);
473 		pernode = memory_less_node_alloc(node, pernodesize);
474 		fill_pernode(node, __pa(pernode), pernodesize);
475 	}
476 
477 	return;
478 }
479 
480 /**
481  * find_memory - walk the EFI memory map and setup the bootmem allocator
482  *
483  * Called early in boot to setup the bootmem allocator, and to
484  * allocate the per-cpu and per-node structures.
485  */
486 void __init find_memory(void)
487 {
488 	int node;
489 
490 	reserve_memory();
491 	efi_memmap_walk(filter_memory, register_active_ranges);
492 
493 	if (num_online_nodes() == 0) {
494 		printk(KERN_ERR "node info missing!\n");
495 		node_set_online(0);
496 	}
497 
498 	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
499 	min_low_pfn = -1;
500 	max_low_pfn = 0;
501 
502 	/* These actually end up getting called by call_pernode_memory() */
503 	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
504 	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
505 	efi_memmap_walk(find_max_min_low_pfn, NULL);
506 
507 	for_each_online_node(node)
508 		if (mem_data[node].min_pfn)
509 			node_clear(node, memory_less_mask);
510 
511 	reserve_pernode_space();
512 	memory_less_nodes();
513 	initialize_pernode_data();
514 
515 	max_pfn = max_low_pfn;
516 
517 	find_initrd();
518 }
519 
520 #ifdef CONFIG_SMP
521 /**
522  * per_cpu_init - setup per-cpu variables
523  *
524  * find_pernode_space() does most of this already, we just need to set
525  * local_per_cpu_offset
526  */
527 void *per_cpu_init(void)
528 {
529 	int cpu;
530 	static int first_time = 1;
531 
532 	if (first_time) {
533 		first_time = 0;
534 		for_each_possible_early_cpu(cpu)
535 			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
536 	}
537 
538 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
539 }
540 #endif /* CONFIG_SMP */
541 
542 /**
543  * call_pernode_memory - use SRAT to call callback functions with node info
544  * @start: physical start of range
545  * @len: length of range
546  * @arg: function to call for each range
547  *
548  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
549  * out to which node a block of memory belongs.  Ignore memory that we cannot
550  * identify, and split blocks that run across multiple nodes.
551  *
552  * Take this opportunity to round the start address up and the end address
553  * down to page boundaries.
554  */
555 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
556 {
557 	unsigned long rs, re, end = start + len;
558 	void (*func)(unsigned long, unsigned long, int);
559 	int i;
560 
561 	start = PAGE_ALIGN(start);
562 	end &= PAGE_MASK;
563 	if (start >= end)
564 		return;
565 
566 	func = arg;
567 
568 	if (!num_node_memblks) {
569 		/* No SRAT table, so assume one node (node 0) */
570 		if (start < end)
571 			(*func)(start, end - start, 0);
572 		return;
573 	}
574 
575 	for (i = 0; i < num_node_memblks; i++) {
576 		rs = max(start, node_memblk[i].start_paddr);
577 		re = min(end, node_memblk[i].start_paddr +
578 			 node_memblk[i].size);
579 
580 		if (rs < re)
581 			(*func)(rs, re - rs, node_memblk[i].nid);
582 
583 		if (re == end)
584 			break;
585 	}
586 }
587 
588 /**
589  * paging_init - setup page tables
590  *
591  * paging_init() sets up the page tables for each node of the system and frees
592  * the bootmem allocator memory for general use.
593  */
594 void __init paging_init(void)
595 {
596 	unsigned long max_dma;
597 	unsigned long max_zone_pfns[MAX_NR_ZONES];
598 
599 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
600 
601 	sparse_init();
602 
603 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
604 	max_zone_pfns[ZONE_DMA32] = max_dma;
605 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
606 	free_area_init(max_zone_pfns);
607 
608 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
609 }
610 
611 #ifdef CONFIG_MEMORY_HOTPLUG
612 pg_data_t *arch_alloc_nodedata(int nid)
613 {
614 	unsigned long size = compute_pernodesize(nid);
615 
616 	return kzalloc(size, GFP_KERNEL);
617 }
618 
619 void arch_free_nodedata(pg_data_t *pgdat)
620 {
621 	kfree(pgdat);
622 }
623 
624 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
625 {
626 	pgdat_list[update_node] = update_pgdat;
627 	scatter_node_data();
628 }
629 #endif
630 
631 #ifdef CONFIG_SPARSEMEM_VMEMMAP
632 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
633 		struct vmem_altmap *altmap)
634 {
635 	return vmemmap_populate_basepages(start, end, node, NULL);
636 }
637 
638 void vmemmap_free(unsigned long start, unsigned long end,
639 		struct vmem_altmap *altmap)
640 {
641 }
642 #endif
643