xref: /openbmc/linux/arch/ia64/mm/discontig.c (revision bc5aa3a0)
1 /*
2  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
3  * Copyright (c) 2001 Intel Corp.
4  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5  * Copyright (c) 2002 NEC Corp.
6  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7  * Copyright (c) 2004 Silicon Graphics, Inc
8  *	Russ Anderson <rja@sgi.com>
9  *	Jesse Barnes <jbarnes@sgi.com>
10  *	Jack Steiner <steiner@sgi.com>
11  */
12 
13 /*
14  * Platform initialization for Discontig Memory
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <linux/slab.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/meminit.h>
29 #include <asm/numa.h>
30 #include <asm/sections.h>
31 
32 /*
33  * Track per-node information needed to setup the boot memory allocator, the
34  * per-node areas, and the real VM.
35  */
36 struct early_node_data {
37 	struct ia64_node_data *node_data;
38 	unsigned long pernode_addr;
39 	unsigned long pernode_size;
40 #ifdef CONFIG_ZONE_DMA
41 	unsigned long num_dma_physpages;
42 #endif
43 	unsigned long min_pfn;
44 	unsigned long max_pfn;
45 };
46 
47 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
48 static nodemask_t memory_less_mask __initdata;
49 
50 pg_data_t *pgdat_list[MAX_NUMNODES];
51 
52 /*
53  * To prevent cache aliasing effects, align per-node structures so that they
54  * start at addresses that are strided by node number.
55  */
56 #define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
57 #define NODEDATA_ALIGN(addr, node)						\
58 	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
59 	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
60 
61 /**
62  * build_node_maps - callback to setup bootmem structs for each node
63  * @start: physical start of range
64  * @len: length of range
65  * @node: node where this range resides
66  *
67  * We allocate a struct bootmem_data for each piece of memory that we wish to
68  * treat as a virtually contiguous block (i.e. each node). Each such block
69  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
70  * if necessary.  Any non-existent pages will simply be part of the virtual
71  * memmap.  We also update min_low_pfn and max_low_pfn here as we receive
72  * memory ranges from the caller.
73  */
74 static int __init build_node_maps(unsigned long start, unsigned long len,
75 				  int node)
76 {
77 	unsigned long spfn, epfn, end = start + len;
78 	struct bootmem_data *bdp = &bootmem_node_data[node];
79 
80 	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
81 	spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
82 
83 	if (!bdp->node_low_pfn) {
84 		bdp->node_min_pfn = spfn;
85 		bdp->node_low_pfn = epfn;
86 	} else {
87 		bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
88 		bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
89 	}
90 
91 	return 0;
92 }
93 
94 /**
95  * early_nr_cpus_node - return number of cpus on a given node
96  * @node: node to check
97  *
98  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
99  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
100  * called yet.  Note that node 0 will also count all non-existent cpus.
101  */
102 static int __meminit early_nr_cpus_node(int node)
103 {
104 	int cpu, n = 0;
105 
106 	for_each_possible_early_cpu(cpu)
107 		if (node == node_cpuid[cpu].nid)
108 			n++;
109 
110 	return n;
111 }
112 
113 /**
114  * compute_pernodesize - compute size of pernode data
115  * @node: the node id.
116  */
117 static unsigned long __meminit compute_pernodesize(int node)
118 {
119 	unsigned long pernodesize = 0, cpus;
120 
121 	cpus = early_nr_cpus_node(node);
122 	pernodesize += PERCPU_PAGE_SIZE * cpus;
123 	pernodesize += node * L1_CACHE_BYTES;
124 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
125 	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
126 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
127 	pernodesize = PAGE_ALIGN(pernodesize);
128 	return pernodesize;
129 }
130 
131 /**
132  * per_cpu_node_setup - setup per-cpu areas on each node
133  * @cpu_data: per-cpu area on this node
134  * @node: node to setup
135  *
136  * Copy the static per-cpu data into the region we just set aside and then
137  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
138  * the end of the area.
139  */
140 static void *per_cpu_node_setup(void *cpu_data, int node)
141 {
142 #ifdef CONFIG_SMP
143 	int cpu;
144 
145 	for_each_possible_early_cpu(cpu) {
146 		void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
147 
148 		if (node != node_cpuid[cpu].nid)
149 			continue;
150 
151 		memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
152 		__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
153 			__per_cpu_start;
154 
155 		/*
156 		 * percpu area for cpu0 is moved from the __init area
157 		 * which is setup by head.S and used till this point.
158 		 * Update ar.k3.  This move is ensures that percpu
159 		 * area for cpu0 is on the correct node and its
160 		 * virtual address isn't insanely far from other
161 		 * percpu areas which is important for congruent
162 		 * percpu allocator.
163 		 */
164 		if (cpu == 0)
165 			ia64_set_kr(IA64_KR_PER_CPU_DATA,
166 				    (unsigned long)cpu_data -
167 				    (unsigned long)__per_cpu_start);
168 
169 		cpu_data += PERCPU_PAGE_SIZE;
170 	}
171 #endif
172 	return cpu_data;
173 }
174 
175 #ifdef CONFIG_SMP
176 /**
177  * setup_per_cpu_areas - setup percpu areas
178  *
179  * Arch code has already allocated and initialized percpu areas.  All
180  * this function has to do is to teach the determined layout to the
181  * dynamic percpu allocator, which happens to be more complex than
182  * creating whole new ones using helpers.
183  */
184 void __init setup_per_cpu_areas(void)
185 {
186 	struct pcpu_alloc_info *ai;
187 	struct pcpu_group_info *uninitialized_var(gi);
188 	unsigned int *cpu_map;
189 	void *base;
190 	unsigned long base_offset;
191 	unsigned int cpu;
192 	ssize_t static_size, reserved_size, dyn_size;
193 	int node, prev_node, unit, nr_units, rc;
194 
195 	ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
196 	if (!ai)
197 		panic("failed to allocate pcpu_alloc_info");
198 	cpu_map = ai->groups[0].cpu_map;
199 
200 	/* determine base */
201 	base = (void *)ULONG_MAX;
202 	for_each_possible_cpu(cpu)
203 		base = min(base,
204 			   (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
205 	base_offset = (void *)__per_cpu_start - base;
206 
207 	/* build cpu_map, units are grouped by node */
208 	unit = 0;
209 	for_each_node(node)
210 		for_each_possible_cpu(cpu)
211 			if (node == node_cpuid[cpu].nid)
212 				cpu_map[unit++] = cpu;
213 	nr_units = unit;
214 
215 	/* set basic parameters */
216 	static_size = __per_cpu_end - __per_cpu_start;
217 	reserved_size = PERCPU_MODULE_RESERVE;
218 	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
219 	if (dyn_size < 0)
220 		panic("percpu area overflow static=%zd reserved=%zd\n",
221 		      static_size, reserved_size);
222 
223 	ai->static_size		= static_size;
224 	ai->reserved_size	= reserved_size;
225 	ai->dyn_size		= dyn_size;
226 	ai->unit_size		= PERCPU_PAGE_SIZE;
227 	ai->atom_size		= PAGE_SIZE;
228 	ai->alloc_size		= PERCPU_PAGE_SIZE;
229 
230 	/*
231 	 * CPUs are put into groups according to node.  Walk cpu_map
232 	 * and create new groups at node boundaries.
233 	 */
234 	prev_node = -1;
235 	ai->nr_groups = 0;
236 	for (unit = 0; unit < nr_units; unit++) {
237 		cpu = cpu_map[unit];
238 		node = node_cpuid[cpu].nid;
239 
240 		if (node == prev_node) {
241 			gi->nr_units++;
242 			continue;
243 		}
244 		prev_node = node;
245 
246 		gi = &ai->groups[ai->nr_groups++];
247 		gi->nr_units		= 1;
248 		gi->base_offset		= __per_cpu_offset[cpu] + base_offset;
249 		gi->cpu_map		= &cpu_map[unit];
250 	}
251 
252 	rc = pcpu_setup_first_chunk(ai, base);
253 	if (rc)
254 		panic("failed to setup percpu area (err=%d)", rc);
255 
256 	pcpu_free_alloc_info(ai);
257 }
258 #endif
259 
260 /**
261  * fill_pernode - initialize pernode data.
262  * @node: the node id.
263  * @pernode: physical address of pernode data
264  * @pernodesize: size of the pernode data
265  */
266 static void __init fill_pernode(int node, unsigned long pernode,
267 	unsigned long pernodesize)
268 {
269 	void *cpu_data;
270 	int cpus = early_nr_cpus_node(node);
271 	struct bootmem_data *bdp = &bootmem_node_data[node];
272 
273 	mem_data[node].pernode_addr = pernode;
274 	mem_data[node].pernode_size = pernodesize;
275 	memset(__va(pernode), 0, pernodesize);
276 
277 	cpu_data = (void *)pernode;
278 	pernode += PERCPU_PAGE_SIZE * cpus;
279 	pernode += node * L1_CACHE_BYTES;
280 
281 	pgdat_list[node] = __va(pernode);
282 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
283 
284 	mem_data[node].node_data = __va(pernode);
285 	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
286 
287 	pgdat_list[node]->bdata = bdp;
288 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
289 
290 	cpu_data = per_cpu_node_setup(cpu_data, node);
291 
292 	return;
293 }
294 
295 /**
296  * find_pernode_space - allocate memory for memory map and per-node structures
297  * @start: physical start of range
298  * @len: length of range
299  * @node: node where this range resides
300  *
301  * This routine reserves space for the per-cpu data struct, the list of
302  * pg_data_ts and the per-node data struct.  Each node will have something like
303  * the following in the first chunk of addr. space large enough to hold it.
304  *
305  *    ________________________
306  *   |                        |
307  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
308  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
309  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
310  *   |------------------------|
311  *   |   local pg_data_t *    |
312  *   |------------------------|
313  *   |  local ia64_node_data  |
314  *   |------------------------|
315  *   |          ???           |
316  *   |________________________|
317  *
318  * Once this space has been set aside, the bootmem maps are initialized.  We
319  * could probably move the allocation of the per-cpu and ia64_node_data space
320  * outside of this function and use alloc_bootmem_node(), but doing it here
321  * is straightforward and we get the alignments we want so...
322  */
323 static int __init find_pernode_space(unsigned long start, unsigned long len,
324 				     int node)
325 {
326 	unsigned long spfn, epfn;
327 	unsigned long pernodesize = 0, pernode, pages, mapsize;
328 	struct bootmem_data *bdp = &bootmem_node_data[node];
329 
330 	spfn = start >> PAGE_SHIFT;
331 	epfn = (start + len) >> PAGE_SHIFT;
332 
333 	pages = bdp->node_low_pfn - bdp->node_min_pfn;
334 	mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
335 
336 	/*
337 	 * Make sure this memory falls within this node's usable memory
338 	 * since we may have thrown some away in build_maps().
339 	 */
340 	if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
341 		return 0;
342 
343 	/* Don't setup this node's local space twice... */
344 	if (mem_data[node].pernode_addr)
345 		return 0;
346 
347 	/*
348 	 * Calculate total size needed, incl. what's necessary
349 	 * for good alignment and alias prevention.
350 	 */
351 	pernodesize = compute_pernodesize(node);
352 	pernode = NODEDATA_ALIGN(start, node);
353 
354 	/* Is this range big enough for what we want to store here? */
355 	if (start + len > (pernode + pernodesize + mapsize))
356 		fill_pernode(node, pernode, pernodesize);
357 
358 	return 0;
359 }
360 
361 /**
362  * free_node_bootmem - free bootmem allocator memory for use
363  * @start: physical start of range
364  * @len: length of range
365  * @node: node where this range resides
366  *
367  * Simply calls the bootmem allocator to free the specified ranged from
368  * the given pg_data_t's bdata struct.  After this function has been called
369  * for all the entries in the EFI memory map, the bootmem allocator will
370  * be ready to service allocation requests.
371  */
372 static int __init free_node_bootmem(unsigned long start, unsigned long len,
373 				    int node)
374 {
375 	free_bootmem_node(pgdat_list[node], start, len);
376 
377 	return 0;
378 }
379 
380 /**
381  * reserve_pernode_space - reserve memory for per-node space
382  *
383  * Reserve the space used by the bootmem maps & per-node space in the boot
384  * allocator so that when we actually create the real mem maps we don't
385  * use their memory.
386  */
387 static void __init reserve_pernode_space(void)
388 {
389 	unsigned long base, size, pages;
390 	struct bootmem_data *bdp;
391 	int node;
392 
393 	for_each_online_node(node) {
394 		pg_data_t *pdp = pgdat_list[node];
395 
396 		if (node_isset(node, memory_less_mask))
397 			continue;
398 
399 		bdp = pdp->bdata;
400 
401 		/* First the bootmem_map itself */
402 		pages = bdp->node_low_pfn - bdp->node_min_pfn;
403 		size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
404 		base = __pa(bdp->node_bootmem_map);
405 		reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
406 
407 		/* Now the per-node space */
408 		size = mem_data[node].pernode_size;
409 		base = __pa(mem_data[node].pernode_addr);
410 		reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
411 	}
412 }
413 
414 static void __meminit scatter_node_data(void)
415 {
416 	pg_data_t **dst;
417 	int node;
418 
419 	/*
420 	 * for_each_online_node() can't be used at here.
421 	 * node_online_map is not set for hot-added nodes at this time,
422 	 * because we are halfway through initialization of the new node's
423 	 * structures.  If for_each_online_node() is used, a new node's
424 	 * pg_data_ptrs will be not initialized. Instead of using it,
425 	 * pgdat_list[] is checked.
426 	 */
427 	for_each_node(node) {
428 		if (pgdat_list[node]) {
429 			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
430 			memcpy(dst, pgdat_list, sizeof(pgdat_list));
431 		}
432 	}
433 }
434 
435 /**
436  * initialize_pernode_data - fixup per-cpu & per-node pointers
437  *
438  * Each node's per-node area has a copy of the global pg_data_t list, so
439  * we copy that to each node here, as well as setting the per-cpu pointer
440  * to the local node data structure.  The active_cpus field of the per-node
441  * structure gets setup by the platform_cpu_init() function later.
442  */
443 static void __init initialize_pernode_data(void)
444 {
445 	int cpu, node;
446 
447 	scatter_node_data();
448 
449 #ifdef CONFIG_SMP
450 	/* Set the node_data pointer for each per-cpu struct */
451 	for_each_possible_early_cpu(cpu) {
452 		node = node_cpuid[cpu].nid;
453 		per_cpu(ia64_cpu_info, cpu).node_data =
454 			mem_data[node].node_data;
455 	}
456 #else
457 	{
458 		struct cpuinfo_ia64 *cpu0_cpu_info;
459 		cpu = 0;
460 		node = node_cpuid[cpu].nid;
461 		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
462 			((char *)&ia64_cpu_info - __per_cpu_start));
463 		cpu0_cpu_info->node_data = mem_data[node].node_data;
464 	}
465 #endif /* CONFIG_SMP */
466 }
467 
468 /**
469  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
470  * 	node but fall back to any other node when __alloc_bootmem_node fails
471  *	for best.
472  * @nid: node id
473  * @pernodesize: size of this node's pernode data
474  */
475 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
476 {
477 	void *ptr = NULL;
478 	u8 best = 0xff;
479 	int bestnode = -1, node, anynode = 0;
480 
481 	for_each_online_node(node) {
482 		if (node_isset(node, memory_less_mask))
483 			continue;
484 		else if (node_distance(nid, node) < best) {
485 			best = node_distance(nid, node);
486 			bestnode = node;
487 		}
488 		anynode = node;
489 	}
490 
491 	if (bestnode == -1)
492 		bestnode = anynode;
493 
494 	ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
495 		PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
496 
497 	return ptr;
498 }
499 
500 /**
501  * memory_less_nodes - allocate and initialize CPU only nodes pernode
502  *	information.
503  */
504 static void __init memory_less_nodes(void)
505 {
506 	unsigned long pernodesize;
507 	void *pernode;
508 	int node;
509 
510 	for_each_node_mask(node, memory_less_mask) {
511 		pernodesize = compute_pernodesize(node);
512 		pernode = memory_less_node_alloc(node, pernodesize);
513 		fill_pernode(node, __pa(pernode), pernodesize);
514 	}
515 
516 	return;
517 }
518 
519 /**
520  * find_memory - walk the EFI memory map and setup the bootmem allocator
521  *
522  * Called early in boot to setup the bootmem allocator, and to
523  * allocate the per-cpu and per-node structures.
524  */
525 void __init find_memory(void)
526 {
527 	int node;
528 
529 	reserve_memory();
530 
531 	if (num_online_nodes() == 0) {
532 		printk(KERN_ERR "node info missing!\n");
533 		node_set_online(0);
534 	}
535 
536 	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
537 	min_low_pfn = -1;
538 	max_low_pfn = 0;
539 
540 	/* These actually end up getting called by call_pernode_memory() */
541 	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
542 	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
543 	efi_memmap_walk(find_max_min_low_pfn, NULL);
544 
545 	for_each_online_node(node)
546 		if (bootmem_node_data[node].node_low_pfn) {
547 			node_clear(node, memory_less_mask);
548 			mem_data[node].min_pfn = ~0UL;
549 		}
550 
551 	efi_memmap_walk(filter_memory, register_active_ranges);
552 
553 	/*
554 	 * Initialize the boot memory maps in reverse order since that's
555 	 * what the bootmem allocator expects
556 	 */
557 	for (node = MAX_NUMNODES - 1; node >= 0; node--) {
558 		unsigned long pernode, pernodesize, map;
559 		struct bootmem_data *bdp;
560 
561 		if (!node_online(node))
562 			continue;
563 		else if (node_isset(node, memory_less_mask))
564 			continue;
565 
566 		bdp = &bootmem_node_data[node];
567 		pernode = mem_data[node].pernode_addr;
568 		pernodesize = mem_data[node].pernode_size;
569 		map = pernode + pernodesize;
570 
571 		init_bootmem_node(pgdat_list[node],
572 				  map>>PAGE_SHIFT,
573 				  bdp->node_min_pfn,
574 				  bdp->node_low_pfn);
575 	}
576 
577 	efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
578 
579 	reserve_pernode_space();
580 	memory_less_nodes();
581 	initialize_pernode_data();
582 
583 	max_pfn = max_low_pfn;
584 
585 	find_initrd();
586 }
587 
588 #ifdef CONFIG_SMP
589 /**
590  * per_cpu_init - setup per-cpu variables
591  *
592  * find_pernode_space() does most of this already, we just need to set
593  * local_per_cpu_offset
594  */
595 void *per_cpu_init(void)
596 {
597 	int cpu;
598 	static int first_time = 1;
599 
600 	if (first_time) {
601 		first_time = 0;
602 		for_each_possible_early_cpu(cpu)
603 			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
604 	}
605 
606 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
607 }
608 #endif /* CONFIG_SMP */
609 
610 /**
611  * call_pernode_memory - use SRAT to call callback functions with node info
612  * @start: physical start of range
613  * @len: length of range
614  * @arg: function to call for each range
615  *
616  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
617  * out to which node a block of memory belongs.  Ignore memory that we cannot
618  * identify, and split blocks that run across multiple nodes.
619  *
620  * Take this opportunity to round the start address up and the end address
621  * down to page boundaries.
622  */
623 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
624 {
625 	unsigned long rs, re, end = start + len;
626 	void (*func)(unsigned long, unsigned long, int);
627 	int i;
628 
629 	start = PAGE_ALIGN(start);
630 	end &= PAGE_MASK;
631 	if (start >= end)
632 		return;
633 
634 	func = arg;
635 
636 	if (!num_node_memblks) {
637 		/* No SRAT table, so assume one node (node 0) */
638 		if (start < end)
639 			(*func)(start, end - start, 0);
640 		return;
641 	}
642 
643 	for (i = 0; i < num_node_memblks; i++) {
644 		rs = max(start, node_memblk[i].start_paddr);
645 		re = min(end, node_memblk[i].start_paddr +
646 			 node_memblk[i].size);
647 
648 		if (rs < re)
649 			(*func)(rs, re - rs, node_memblk[i].nid);
650 
651 		if (re == end)
652 			break;
653 	}
654 }
655 
656 /**
657  * count_node_pages - callback to build per-node memory info structures
658  * @start: physical start of range
659  * @len: length of range
660  * @node: node where this range resides
661  *
662  * Each node has it's own number of physical pages, DMAable pages, start, and
663  * end page frame number.  This routine will be called by call_pernode_memory()
664  * for each piece of usable memory and will setup these values for each node.
665  * Very similar to build_maps().
666  */
667 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
668 {
669 	unsigned long end = start + len;
670 
671 #ifdef CONFIG_ZONE_DMA
672 	if (start <= __pa(MAX_DMA_ADDRESS))
673 		mem_data[node].num_dma_physpages +=
674 			(min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
675 #endif
676 	start = GRANULEROUNDDOWN(start);
677 	end = GRANULEROUNDUP(end);
678 	mem_data[node].max_pfn = max(mem_data[node].max_pfn,
679 				     end >> PAGE_SHIFT);
680 	mem_data[node].min_pfn = min(mem_data[node].min_pfn,
681 				     start >> PAGE_SHIFT);
682 
683 	return 0;
684 }
685 
686 /**
687  * paging_init - setup page tables
688  *
689  * paging_init() sets up the page tables for each node of the system and frees
690  * the bootmem allocator memory for general use.
691  */
692 void __init paging_init(void)
693 {
694 	unsigned long max_dma;
695 	unsigned long pfn_offset = 0;
696 	unsigned long max_pfn = 0;
697 	int node;
698 	unsigned long max_zone_pfns[MAX_NR_ZONES];
699 
700 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
701 
702 	efi_memmap_walk(filter_rsvd_memory, count_node_pages);
703 
704 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
705 	sparse_init();
706 
707 #ifdef CONFIG_VIRTUAL_MEM_MAP
708 	VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
709 		sizeof(struct page));
710 	vmem_map = (struct page *) VMALLOC_END;
711 	efi_memmap_walk(create_mem_map_page_table, NULL);
712 	printk("Virtual mem_map starts at 0x%p\n", vmem_map);
713 #endif
714 
715 	for_each_online_node(node) {
716 		pfn_offset = mem_data[node].min_pfn;
717 
718 #ifdef CONFIG_VIRTUAL_MEM_MAP
719 		NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
720 #endif
721 		if (mem_data[node].max_pfn > max_pfn)
722 			max_pfn = mem_data[node].max_pfn;
723 	}
724 
725 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
726 #ifdef CONFIG_ZONE_DMA
727 	max_zone_pfns[ZONE_DMA] = max_dma;
728 #endif
729 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
730 	free_area_init_nodes(max_zone_pfns);
731 
732 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
733 }
734 
735 #ifdef CONFIG_MEMORY_HOTPLUG
736 pg_data_t *arch_alloc_nodedata(int nid)
737 {
738 	unsigned long size = compute_pernodesize(nid);
739 
740 	return kzalloc(size, GFP_KERNEL);
741 }
742 
743 void arch_free_nodedata(pg_data_t *pgdat)
744 {
745 	kfree(pgdat);
746 }
747 
748 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
749 {
750 	pgdat_list[update_node] = update_pgdat;
751 	scatter_node_data();
752 }
753 #endif
754 
755 #ifdef CONFIG_SPARSEMEM_VMEMMAP
756 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
757 {
758 	return vmemmap_populate_basepages(start, end, node);
759 }
760 
761 void vmemmap_free(unsigned long start, unsigned long end)
762 {
763 }
764 #endif
765