xref: /openbmc/linux/arch/ia64/mm/discontig.c (revision b627b4ed)
1 /*
2  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
3  * Copyright (c) 2001 Intel Corp.
4  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5  * Copyright (c) 2002 NEC Corp.
6  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7  * Copyright (c) 2004 Silicon Graphics, Inc
8  *	Russ Anderson <rja@sgi.com>
9  *	Jesse Barnes <jbarnes@sgi.com>
10  *	Jack Steiner <steiner@sgi.com>
11  */
12 
13 /*
14  * Platform initialization for Discontig Memory
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlb.h>
27 #include <asm/meminit.h>
28 #include <asm/numa.h>
29 #include <asm/sections.h>
30 
31 /*
32  * Track per-node information needed to setup the boot memory allocator, the
33  * per-node areas, and the real VM.
34  */
35 struct early_node_data {
36 	struct ia64_node_data *node_data;
37 	unsigned long pernode_addr;
38 	unsigned long pernode_size;
39 	unsigned long num_physpages;
40 #ifdef CONFIG_ZONE_DMA
41 	unsigned long num_dma_physpages;
42 #endif
43 	unsigned long min_pfn;
44 	unsigned long max_pfn;
45 };
46 
47 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
48 static nodemask_t memory_less_mask __initdata;
49 
50 pg_data_t *pgdat_list[MAX_NUMNODES];
51 
52 /*
53  * To prevent cache aliasing effects, align per-node structures so that they
54  * start at addresses that are strided by node number.
55  */
56 #define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
57 #define NODEDATA_ALIGN(addr, node)						\
58 	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
59 	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
60 
61 /**
62  * build_node_maps - callback to setup bootmem structs for each node
63  * @start: physical start of range
64  * @len: length of range
65  * @node: node where this range resides
66  *
67  * We allocate a struct bootmem_data for each piece of memory that we wish to
68  * treat as a virtually contiguous block (i.e. each node). Each such block
69  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
70  * if necessary.  Any non-existent pages will simply be part of the virtual
71  * memmap.  We also update min_low_pfn and max_low_pfn here as we receive
72  * memory ranges from the caller.
73  */
74 static int __init build_node_maps(unsigned long start, unsigned long len,
75 				  int node)
76 {
77 	unsigned long spfn, epfn, end = start + len;
78 	struct bootmem_data *bdp = &bootmem_node_data[node];
79 
80 	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
81 	spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
82 
83 	if (!bdp->node_low_pfn) {
84 		bdp->node_min_pfn = spfn;
85 		bdp->node_low_pfn = epfn;
86 	} else {
87 		bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
88 		bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
89 	}
90 
91 	return 0;
92 }
93 
94 /**
95  * early_nr_cpus_node - return number of cpus on a given node
96  * @node: node to check
97  *
98  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
99  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
100  * called yet.  Note that node 0 will also count all non-existent cpus.
101  */
102 static int __meminit early_nr_cpus_node(int node)
103 {
104 	int cpu, n = 0;
105 
106 	for_each_possible_early_cpu(cpu)
107 		if (node == node_cpuid[cpu].nid)
108 			n++;
109 
110 	return n;
111 }
112 
113 /**
114  * compute_pernodesize - compute size of pernode data
115  * @node: the node id.
116  */
117 static unsigned long __meminit compute_pernodesize(int node)
118 {
119 	unsigned long pernodesize = 0, cpus;
120 
121 	cpus = early_nr_cpus_node(node);
122 	pernodesize += PERCPU_PAGE_SIZE * cpus;
123 	pernodesize += node * L1_CACHE_BYTES;
124 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
125 	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
126 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
127 	pernodesize = PAGE_ALIGN(pernodesize);
128 	return pernodesize;
129 }
130 
131 /**
132  * per_cpu_node_setup - setup per-cpu areas on each node
133  * @cpu_data: per-cpu area on this node
134  * @node: node to setup
135  *
136  * Copy the static per-cpu data into the region we just set aside and then
137  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
138  * the end of the area.
139  */
140 static void *per_cpu_node_setup(void *cpu_data, int node)
141 {
142 #ifdef CONFIG_SMP
143 	int cpu;
144 
145 	for_each_possible_early_cpu(cpu) {
146 		if (cpu == 0) {
147 			void *cpu0_data = __cpu0_per_cpu;
148 			__per_cpu_offset[cpu] = (char*)cpu0_data -
149 				__per_cpu_start;
150 		} else if (node == node_cpuid[cpu].nid) {
151 			memcpy(__va(cpu_data), __phys_per_cpu_start,
152 			       __per_cpu_end - __per_cpu_start);
153 			__per_cpu_offset[cpu] = (char*)__va(cpu_data) -
154 				__per_cpu_start;
155 			cpu_data += PERCPU_PAGE_SIZE;
156 		}
157 	}
158 #endif
159 	return cpu_data;
160 }
161 
162 /**
163  * fill_pernode - initialize pernode data.
164  * @node: the node id.
165  * @pernode: physical address of pernode data
166  * @pernodesize: size of the pernode data
167  */
168 static void __init fill_pernode(int node, unsigned long pernode,
169 	unsigned long pernodesize)
170 {
171 	void *cpu_data;
172 	int cpus = early_nr_cpus_node(node);
173 	struct bootmem_data *bdp = &bootmem_node_data[node];
174 
175 	mem_data[node].pernode_addr = pernode;
176 	mem_data[node].pernode_size = pernodesize;
177 	memset(__va(pernode), 0, pernodesize);
178 
179 	cpu_data = (void *)pernode;
180 	pernode += PERCPU_PAGE_SIZE * cpus;
181 	pernode += node * L1_CACHE_BYTES;
182 
183 	pgdat_list[node] = __va(pernode);
184 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
185 
186 	mem_data[node].node_data = __va(pernode);
187 	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
188 
189 	pgdat_list[node]->bdata = bdp;
190 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
191 
192 	cpu_data = per_cpu_node_setup(cpu_data, node);
193 
194 	return;
195 }
196 
197 /**
198  * find_pernode_space - allocate memory for memory map and per-node structures
199  * @start: physical start of range
200  * @len: length of range
201  * @node: node where this range resides
202  *
203  * This routine reserves space for the per-cpu data struct, the list of
204  * pg_data_ts and the per-node data struct.  Each node will have something like
205  * the following in the first chunk of addr. space large enough to hold it.
206  *
207  *    ________________________
208  *   |                        |
209  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
210  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
211  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
212  *   |------------------------|
213  *   |   local pg_data_t *    |
214  *   |------------------------|
215  *   |  local ia64_node_data  |
216  *   |------------------------|
217  *   |          ???           |
218  *   |________________________|
219  *
220  * Once this space has been set aside, the bootmem maps are initialized.  We
221  * could probably move the allocation of the per-cpu and ia64_node_data space
222  * outside of this function and use alloc_bootmem_node(), but doing it here
223  * is straightforward and we get the alignments we want so...
224  */
225 static int __init find_pernode_space(unsigned long start, unsigned long len,
226 				     int node)
227 {
228 	unsigned long spfn, epfn;
229 	unsigned long pernodesize = 0, pernode, pages, mapsize;
230 	struct bootmem_data *bdp = &bootmem_node_data[node];
231 
232 	spfn = start >> PAGE_SHIFT;
233 	epfn = (start + len) >> PAGE_SHIFT;
234 
235 	pages = bdp->node_low_pfn - bdp->node_min_pfn;
236 	mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
237 
238 	/*
239 	 * Make sure this memory falls within this node's usable memory
240 	 * since we may have thrown some away in build_maps().
241 	 */
242 	if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
243 		return 0;
244 
245 	/* Don't setup this node's local space twice... */
246 	if (mem_data[node].pernode_addr)
247 		return 0;
248 
249 	/*
250 	 * Calculate total size needed, incl. what's necessary
251 	 * for good alignment and alias prevention.
252 	 */
253 	pernodesize = compute_pernodesize(node);
254 	pernode = NODEDATA_ALIGN(start, node);
255 
256 	/* Is this range big enough for what we want to store here? */
257 	if (start + len > (pernode + pernodesize + mapsize))
258 		fill_pernode(node, pernode, pernodesize);
259 
260 	return 0;
261 }
262 
263 /**
264  * free_node_bootmem - free bootmem allocator memory for use
265  * @start: physical start of range
266  * @len: length of range
267  * @node: node where this range resides
268  *
269  * Simply calls the bootmem allocator to free the specified ranged from
270  * the given pg_data_t's bdata struct.  After this function has been called
271  * for all the entries in the EFI memory map, the bootmem allocator will
272  * be ready to service allocation requests.
273  */
274 static int __init free_node_bootmem(unsigned long start, unsigned long len,
275 				    int node)
276 {
277 	free_bootmem_node(pgdat_list[node], start, len);
278 
279 	return 0;
280 }
281 
282 /**
283  * reserve_pernode_space - reserve memory for per-node space
284  *
285  * Reserve the space used by the bootmem maps & per-node space in the boot
286  * allocator so that when we actually create the real mem maps we don't
287  * use their memory.
288  */
289 static void __init reserve_pernode_space(void)
290 {
291 	unsigned long base, size, pages;
292 	struct bootmem_data *bdp;
293 	int node;
294 
295 	for_each_online_node(node) {
296 		pg_data_t *pdp = pgdat_list[node];
297 
298 		if (node_isset(node, memory_less_mask))
299 			continue;
300 
301 		bdp = pdp->bdata;
302 
303 		/* First the bootmem_map itself */
304 		pages = bdp->node_low_pfn - bdp->node_min_pfn;
305 		size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
306 		base = __pa(bdp->node_bootmem_map);
307 		reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
308 
309 		/* Now the per-node space */
310 		size = mem_data[node].pernode_size;
311 		base = __pa(mem_data[node].pernode_addr);
312 		reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
313 	}
314 }
315 
316 static void __meminit scatter_node_data(void)
317 {
318 	pg_data_t **dst;
319 	int node;
320 
321 	/*
322 	 * for_each_online_node() can't be used at here.
323 	 * node_online_map is not set for hot-added nodes at this time,
324 	 * because we are halfway through initialization of the new node's
325 	 * structures.  If for_each_online_node() is used, a new node's
326 	 * pg_data_ptrs will be not initialized. Instead of using it,
327 	 * pgdat_list[] is checked.
328 	 */
329 	for_each_node(node) {
330 		if (pgdat_list[node]) {
331 			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
332 			memcpy(dst, pgdat_list, sizeof(pgdat_list));
333 		}
334 	}
335 }
336 
337 /**
338  * initialize_pernode_data - fixup per-cpu & per-node pointers
339  *
340  * Each node's per-node area has a copy of the global pg_data_t list, so
341  * we copy that to each node here, as well as setting the per-cpu pointer
342  * to the local node data structure.  The active_cpus field of the per-node
343  * structure gets setup by the platform_cpu_init() function later.
344  */
345 static void __init initialize_pernode_data(void)
346 {
347 	int cpu, node;
348 
349 	scatter_node_data();
350 
351 #ifdef CONFIG_SMP
352 	/* Set the node_data pointer for each per-cpu struct */
353 	for_each_possible_early_cpu(cpu) {
354 		node = node_cpuid[cpu].nid;
355 		per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
356 	}
357 #else
358 	{
359 		struct cpuinfo_ia64 *cpu0_cpu_info;
360 		cpu = 0;
361 		node = node_cpuid[cpu].nid;
362 		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
363 			((char *)&per_cpu__cpu_info - __per_cpu_start));
364 		cpu0_cpu_info->node_data = mem_data[node].node_data;
365 	}
366 #endif /* CONFIG_SMP */
367 }
368 
369 /**
370  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
371  * 	node but fall back to any other node when __alloc_bootmem_node fails
372  *	for best.
373  * @nid: node id
374  * @pernodesize: size of this node's pernode data
375  */
376 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
377 {
378 	void *ptr = NULL;
379 	u8 best = 0xff;
380 	int bestnode = -1, node, anynode = 0;
381 
382 	for_each_online_node(node) {
383 		if (node_isset(node, memory_less_mask))
384 			continue;
385 		else if (node_distance(nid, node) < best) {
386 			best = node_distance(nid, node);
387 			bestnode = node;
388 		}
389 		anynode = node;
390 	}
391 
392 	if (bestnode == -1)
393 		bestnode = anynode;
394 
395 	ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
396 		PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
397 
398 	return ptr;
399 }
400 
401 /**
402  * memory_less_nodes - allocate and initialize CPU only nodes pernode
403  *	information.
404  */
405 static void __init memory_less_nodes(void)
406 {
407 	unsigned long pernodesize;
408 	void *pernode;
409 	int node;
410 
411 	for_each_node_mask(node, memory_less_mask) {
412 		pernodesize = compute_pernodesize(node);
413 		pernode = memory_less_node_alloc(node, pernodesize);
414 		fill_pernode(node, __pa(pernode), pernodesize);
415 	}
416 
417 	return;
418 }
419 
420 /**
421  * find_memory - walk the EFI memory map and setup the bootmem allocator
422  *
423  * Called early in boot to setup the bootmem allocator, and to
424  * allocate the per-cpu and per-node structures.
425  */
426 void __init find_memory(void)
427 {
428 	int node;
429 
430 	reserve_memory();
431 
432 	if (num_online_nodes() == 0) {
433 		printk(KERN_ERR "node info missing!\n");
434 		node_set_online(0);
435 	}
436 
437 	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
438 	min_low_pfn = -1;
439 	max_low_pfn = 0;
440 
441 	/* These actually end up getting called by call_pernode_memory() */
442 	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
443 	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
444 	efi_memmap_walk(find_max_min_low_pfn, NULL);
445 
446 	for_each_online_node(node)
447 		if (bootmem_node_data[node].node_low_pfn) {
448 			node_clear(node, memory_less_mask);
449 			mem_data[node].min_pfn = ~0UL;
450 		}
451 
452 	efi_memmap_walk(filter_memory, register_active_ranges);
453 
454 	/*
455 	 * Initialize the boot memory maps in reverse order since that's
456 	 * what the bootmem allocator expects
457 	 */
458 	for (node = MAX_NUMNODES - 1; node >= 0; node--) {
459 		unsigned long pernode, pernodesize, map;
460 		struct bootmem_data *bdp;
461 
462 		if (!node_online(node))
463 			continue;
464 		else if (node_isset(node, memory_less_mask))
465 			continue;
466 
467 		bdp = &bootmem_node_data[node];
468 		pernode = mem_data[node].pernode_addr;
469 		pernodesize = mem_data[node].pernode_size;
470 		map = pernode + pernodesize;
471 
472 		init_bootmem_node(pgdat_list[node],
473 				  map>>PAGE_SHIFT,
474 				  bdp->node_min_pfn,
475 				  bdp->node_low_pfn);
476 	}
477 
478 	efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
479 
480 	reserve_pernode_space();
481 	memory_less_nodes();
482 	initialize_pernode_data();
483 
484 	max_pfn = max_low_pfn;
485 
486 	find_initrd();
487 }
488 
489 #ifdef CONFIG_SMP
490 /**
491  * per_cpu_init - setup per-cpu variables
492  *
493  * find_pernode_space() does most of this already, we just need to set
494  * local_per_cpu_offset
495  */
496 void __cpuinit *per_cpu_init(void)
497 {
498 	int cpu;
499 	static int first_time = 1;
500 
501 	if (first_time) {
502 		first_time = 0;
503 		for_each_possible_early_cpu(cpu)
504 			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
505 	}
506 
507 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
508 }
509 #endif /* CONFIG_SMP */
510 
511 /**
512  * show_mem - give short summary of memory stats
513  *
514  * Shows a simple page count of reserved and used pages in the system.
515  * For discontig machines, it does this on a per-pgdat basis.
516  */
517 void show_mem(void)
518 {
519 	int i, total_reserved = 0;
520 	int total_shared = 0, total_cached = 0;
521 	unsigned long total_present = 0;
522 	pg_data_t *pgdat;
523 
524 	printk(KERN_INFO "Mem-info:\n");
525 	show_free_areas();
526 	printk(KERN_INFO "Node memory in pages:\n");
527 	for_each_online_pgdat(pgdat) {
528 		unsigned long present;
529 		unsigned long flags;
530 		int shared = 0, cached = 0, reserved = 0;
531 
532 		pgdat_resize_lock(pgdat, &flags);
533 		present = pgdat->node_present_pages;
534 		for(i = 0; i < pgdat->node_spanned_pages; i++) {
535 			struct page *page;
536 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
537 				touch_nmi_watchdog();
538 			if (pfn_valid(pgdat->node_start_pfn + i))
539 				page = pfn_to_page(pgdat->node_start_pfn + i);
540 			else {
541 				i = vmemmap_find_next_valid_pfn(pgdat->node_id,
542 					 i) - 1;
543 				continue;
544 			}
545 			if (PageReserved(page))
546 				reserved++;
547 			else if (PageSwapCache(page))
548 				cached++;
549 			else if (page_count(page))
550 				shared += page_count(page)-1;
551 		}
552 		pgdat_resize_unlock(pgdat, &flags);
553 		total_present += present;
554 		total_reserved += reserved;
555 		total_cached += cached;
556 		total_shared += shared;
557 		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
558 		       "shrd: %10d, swpd: %10d\n", pgdat->node_id,
559 		       present, reserved, shared, cached);
560 	}
561 	printk(KERN_INFO "%ld pages of RAM\n", total_present);
562 	printk(KERN_INFO "%d reserved pages\n", total_reserved);
563 	printk(KERN_INFO "%d pages shared\n", total_shared);
564 	printk(KERN_INFO "%d pages swap cached\n", total_cached);
565 	printk(KERN_INFO "Total of %ld pages in page table cache\n",
566 	       quicklist_total_size());
567 	printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
568 }
569 
570 /**
571  * call_pernode_memory - use SRAT to call callback functions with node info
572  * @start: physical start of range
573  * @len: length of range
574  * @arg: function to call for each range
575  *
576  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
577  * out to which node a block of memory belongs.  Ignore memory that we cannot
578  * identify, and split blocks that run across multiple nodes.
579  *
580  * Take this opportunity to round the start address up and the end address
581  * down to page boundaries.
582  */
583 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
584 {
585 	unsigned long rs, re, end = start + len;
586 	void (*func)(unsigned long, unsigned long, int);
587 	int i;
588 
589 	start = PAGE_ALIGN(start);
590 	end &= PAGE_MASK;
591 	if (start >= end)
592 		return;
593 
594 	func = arg;
595 
596 	if (!num_node_memblks) {
597 		/* No SRAT table, so assume one node (node 0) */
598 		if (start < end)
599 			(*func)(start, end - start, 0);
600 		return;
601 	}
602 
603 	for (i = 0; i < num_node_memblks; i++) {
604 		rs = max(start, node_memblk[i].start_paddr);
605 		re = min(end, node_memblk[i].start_paddr +
606 			 node_memblk[i].size);
607 
608 		if (rs < re)
609 			(*func)(rs, re - rs, node_memblk[i].nid);
610 
611 		if (re == end)
612 			break;
613 	}
614 }
615 
616 /**
617  * count_node_pages - callback to build per-node memory info structures
618  * @start: physical start of range
619  * @len: length of range
620  * @node: node where this range resides
621  *
622  * Each node has it's own number of physical pages, DMAable pages, start, and
623  * end page frame number.  This routine will be called by call_pernode_memory()
624  * for each piece of usable memory and will setup these values for each node.
625  * Very similar to build_maps().
626  */
627 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
628 {
629 	unsigned long end = start + len;
630 
631 	mem_data[node].num_physpages += len >> PAGE_SHIFT;
632 #ifdef CONFIG_ZONE_DMA
633 	if (start <= __pa(MAX_DMA_ADDRESS))
634 		mem_data[node].num_dma_physpages +=
635 			(min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
636 #endif
637 	start = GRANULEROUNDDOWN(start);
638 	end = GRANULEROUNDUP(end);
639 	mem_data[node].max_pfn = max(mem_data[node].max_pfn,
640 				     end >> PAGE_SHIFT);
641 	mem_data[node].min_pfn = min(mem_data[node].min_pfn,
642 				     start >> PAGE_SHIFT);
643 
644 	return 0;
645 }
646 
647 /**
648  * paging_init - setup page tables
649  *
650  * paging_init() sets up the page tables for each node of the system and frees
651  * the bootmem allocator memory for general use.
652  */
653 void __init paging_init(void)
654 {
655 	unsigned long max_dma;
656 	unsigned long pfn_offset = 0;
657 	unsigned long max_pfn = 0;
658 	int node;
659 	unsigned long max_zone_pfns[MAX_NR_ZONES];
660 
661 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
662 
663 	efi_memmap_walk(filter_rsvd_memory, count_node_pages);
664 
665 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
666 	sparse_init();
667 
668 #ifdef CONFIG_VIRTUAL_MEM_MAP
669 	vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
670 		sizeof(struct page));
671 	vmem_map = (struct page *) vmalloc_end;
672 	efi_memmap_walk(create_mem_map_page_table, NULL);
673 	printk("Virtual mem_map starts at 0x%p\n", vmem_map);
674 #endif
675 
676 	for_each_online_node(node) {
677 		num_physpages += mem_data[node].num_physpages;
678 		pfn_offset = mem_data[node].min_pfn;
679 
680 #ifdef CONFIG_VIRTUAL_MEM_MAP
681 		NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
682 #endif
683 		if (mem_data[node].max_pfn > max_pfn)
684 			max_pfn = mem_data[node].max_pfn;
685 	}
686 
687 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
688 #ifdef CONFIG_ZONE_DMA
689 	max_zone_pfns[ZONE_DMA] = max_dma;
690 #endif
691 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
692 	free_area_init_nodes(max_zone_pfns);
693 
694 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
695 }
696 
697 #ifdef CONFIG_MEMORY_HOTPLUG
698 pg_data_t *arch_alloc_nodedata(int nid)
699 {
700 	unsigned long size = compute_pernodesize(nid);
701 
702 	return kzalloc(size, GFP_KERNEL);
703 }
704 
705 void arch_free_nodedata(pg_data_t *pgdat)
706 {
707 	kfree(pgdat);
708 }
709 
710 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
711 {
712 	pgdat_list[update_node] = update_pgdat;
713 	scatter_node_data();
714 }
715 #endif
716 
717 #ifdef CONFIG_SPARSEMEM_VMEMMAP
718 int __meminit vmemmap_populate(struct page *start_page,
719 						unsigned long size, int node)
720 {
721 	return vmemmap_populate_basepages(start_page, size, node);
722 }
723 #endif
724