1 /* 2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. 3 * Copyright (c) 2001 Intel Corp. 4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> 5 * Copyright (c) 2002 NEC Corp. 6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> 7 * Copyright (c) 2004 Silicon Graphics, Inc 8 * Russ Anderson <rja@sgi.com> 9 * Jesse Barnes <jbarnes@sgi.com> 10 * Jack Steiner <steiner@sgi.com> 11 */ 12 13 /* 14 * Platform initialization for Discontig Memory 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/nmi.h> 20 #include <linux/swap.h> 21 #include <linux/bootmem.h> 22 #include <linux/acpi.h> 23 #include <linux/efi.h> 24 #include <linux/nodemask.h> 25 #include <asm/pgalloc.h> 26 #include <asm/tlb.h> 27 #include <asm/meminit.h> 28 #include <asm/numa.h> 29 #include <asm/sections.h> 30 31 /* 32 * Track per-node information needed to setup the boot memory allocator, the 33 * per-node areas, and the real VM. 34 */ 35 struct early_node_data { 36 struct ia64_node_data *node_data; 37 unsigned long pernode_addr; 38 unsigned long pernode_size; 39 unsigned long num_physpages; 40 #ifdef CONFIG_ZONE_DMA 41 unsigned long num_dma_physpages; 42 #endif 43 unsigned long min_pfn; 44 unsigned long max_pfn; 45 }; 46 47 static struct early_node_data mem_data[MAX_NUMNODES] __initdata; 48 static nodemask_t memory_less_mask __initdata; 49 50 pg_data_t *pgdat_list[MAX_NUMNODES]; 51 52 /* 53 * To prevent cache aliasing effects, align per-node structures so that they 54 * start at addresses that are strided by node number. 55 */ 56 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024) 57 #define NODEDATA_ALIGN(addr, node) \ 58 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \ 59 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1))) 60 61 /** 62 * build_node_maps - callback to setup bootmem structs for each node 63 * @start: physical start of range 64 * @len: length of range 65 * @node: node where this range resides 66 * 67 * We allocate a struct bootmem_data for each piece of memory that we wish to 68 * treat as a virtually contiguous block (i.e. each node). Each such block 69 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down 70 * if necessary. Any non-existent pages will simply be part of the virtual 71 * memmap. We also update min_low_pfn and max_low_pfn here as we receive 72 * memory ranges from the caller. 73 */ 74 static int __init build_node_maps(unsigned long start, unsigned long len, 75 int node) 76 { 77 unsigned long spfn, epfn, end = start + len; 78 struct bootmem_data *bdp = &bootmem_node_data[node]; 79 80 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; 81 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT; 82 83 if (!bdp->node_low_pfn) { 84 bdp->node_min_pfn = spfn; 85 bdp->node_low_pfn = epfn; 86 } else { 87 bdp->node_min_pfn = min(spfn, bdp->node_min_pfn); 88 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); 89 } 90 91 return 0; 92 } 93 94 /** 95 * early_nr_cpus_node - return number of cpus on a given node 96 * @node: node to check 97 * 98 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because 99 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been 100 * called yet. Note that node 0 will also count all non-existent cpus. 101 */ 102 static int __meminit early_nr_cpus_node(int node) 103 { 104 int cpu, n = 0; 105 106 for_each_possible_early_cpu(cpu) 107 if (node == node_cpuid[cpu].nid) 108 n++; 109 110 return n; 111 } 112 113 /** 114 * compute_pernodesize - compute size of pernode data 115 * @node: the node id. 116 */ 117 static unsigned long __meminit compute_pernodesize(int node) 118 { 119 unsigned long pernodesize = 0, cpus; 120 121 cpus = early_nr_cpus_node(node); 122 pernodesize += PERCPU_PAGE_SIZE * cpus; 123 pernodesize += node * L1_CACHE_BYTES; 124 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 125 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 126 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 127 pernodesize = PAGE_ALIGN(pernodesize); 128 return pernodesize; 129 } 130 131 /** 132 * per_cpu_node_setup - setup per-cpu areas on each node 133 * @cpu_data: per-cpu area on this node 134 * @node: node to setup 135 * 136 * Copy the static per-cpu data into the region we just set aside and then 137 * setup __per_cpu_offset for each CPU on this node. Return a pointer to 138 * the end of the area. 139 */ 140 static void *per_cpu_node_setup(void *cpu_data, int node) 141 { 142 #ifdef CONFIG_SMP 143 int cpu; 144 145 for_each_possible_early_cpu(cpu) { 146 if (cpu == 0) { 147 void *cpu0_data = __cpu0_per_cpu; 148 __per_cpu_offset[cpu] = (char*)cpu0_data - 149 __per_cpu_start; 150 } else if (node == node_cpuid[cpu].nid) { 151 memcpy(__va(cpu_data), __phys_per_cpu_start, 152 __per_cpu_end - __per_cpu_start); 153 __per_cpu_offset[cpu] = (char*)__va(cpu_data) - 154 __per_cpu_start; 155 cpu_data += PERCPU_PAGE_SIZE; 156 } 157 } 158 #endif 159 return cpu_data; 160 } 161 162 /** 163 * fill_pernode - initialize pernode data. 164 * @node: the node id. 165 * @pernode: physical address of pernode data 166 * @pernodesize: size of the pernode data 167 */ 168 static void __init fill_pernode(int node, unsigned long pernode, 169 unsigned long pernodesize) 170 { 171 void *cpu_data; 172 int cpus = early_nr_cpus_node(node); 173 struct bootmem_data *bdp = &bootmem_node_data[node]; 174 175 mem_data[node].pernode_addr = pernode; 176 mem_data[node].pernode_size = pernodesize; 177 memset(__va(pernode), 0, pernodesize); 178 179 cpu_data = (void *)pernode; 180 pernode += PERCPU_PAGE_SIZE * cpus; 181 pernode += node * L1_CACHE_BYTES; 182 183 pgdat_list[node] = __va(pernode); 184 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 185 186 mem_data[node].node_data = __va(pernode); 187 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 188 189 pgdat_list[node]->bdata = bdp; 190 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 191 192 cpu_data = per_cpu_node_setup(cpu_data, node); 193 194 return; 195 } 196 197 /** 198 * find_pernode_space - allocate memory for memory map and per-node structures 199 * @start: physical start of range 200 * @len: length of range 201 * @node: node where this range resides 202 * 203 * This routine reserves space for the per-cpu data struct, the list of 204 * pg_data_ts and the per-node data struct. Each node will have something like 205 * the following in the first chunk of addr. space large enough to hold it. 206 * 207 * ________________________ 208 * | | 209 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first 210 * | PERCPU_PAGE_SIZE * | start and length big enough 211 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. 212 * |------------------------| 213 * | local pg_data_t * | 214 * |------------------------| 215 * | local ia64_node_data | 216 * |------------------------| 217 * | ??? | 218 * |________________________| 219 * 220 * Once this space has been set aside, the bootmem maps are initialized. We 221 * could probably move the allocation of the per-cpu and ia64_node_data space 222 * outside of this function and use alloc_bootmem_node(), but doing it here 223 * is straightforward and we get the alignments we want so... 224 */ 225 static int __init find_pernode_space(unsigned long start, unsigned long len, 226 int node) 227 { 228 unsigned long spfn, epfn; 229 unsigned long pernodesize = 0, pernode, pages, mapsize; 230 struct bootmem_data *bdp = &bootmem_node_data[node]; 231 232 spfn = start >> PAGE_SHIFT; 233 epfn = (start + len) >> PAGE_SHIFT; 234 235 pages = bdp->node_low_pfn - bdp->node_min_pfn; 236 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; 237 238 /* 239 * Make sure this memory falls within this node's usable memory 240 * since we may have thrown some away in build_maps(). 241 */ 242 if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn) 243 return 0; 244 245 /* Don't setup this node's local space twice... */ 246 if (mem_data[node].pernode_addr) 247 return 0; 248 249 /* 250 * Calculate total size needed, incl. what's necessary 251 * for good alignment and alias prevention. 252 */ 253 pernodesize = compute_pernodesize(node); 254 pernode = NODEDATA_ALIGN(start, node); 255 256 /* Is this range big enough for what we want to store here? */ 257 if (start + len > (pernode + pernodesize + mapsize)) 258 fill_pernode(node, pernode, pernodesize); 259 260 return 0; 261 } 262 263 /** 264 * free_node_bootmem - free bootmem allocator memory for use 265 * @start: physical start of range 266 * @len: length of range 267 * @node: node where this range resides 268 * 269 * Simply calls the bootmem allocator to free the specified ranged from 270 * the given pg_data_t's bdata struct. After this function has been called 271 * for all the entries in the EFI memory map, the bootmem allocator will 272 * be ready to service allocation requests. 273 */ 274 static int __init free_node_bootmem(unsigned long start, unsigned long len, 275 int node) 276 { 277 free_bootmem_node(pgdat_list[node], start, len); 278 279 return 0; 280 } 281 282 /** 283 * reserve_pernode_space - reserve memory for per-node space 284 * 285 * Reserve the space used by the bootmem maps & per-node space in the boot 286 * allocator so that when we actually create the real mem maps we don't 287 * use their memory. 288 */ 289 static void __init reserve_pernode_space(void) 290 { 291 unsigned long base, size, pages; 292 struct bootmem_data *bdp; 293 int node; 294 295 for_each_online_node(node) { 296 pg_data_t *pdp = pgdat_list[node]; 297 298 if (node_isset(node, memory_less_mask)) 299 continue; 300 301 bdp = pdp->bdata; 302 303 /* First the bootmem_map itself */ 304 pages = bdp->node_low_pfn - bdp->node_min_pfn; 305 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; 306 base = __pa(bdp->node_bootmem_map); 307 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); 308 309 /* Now the per-node space */ 310 size = mem_data[node].pernode_size; 311 base = __pa(mem_data[node].pernode_addr); 312 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); 313 } 314 } 315 316 static void __meminit scatter_node_data(void) 317 { 318 pg_data_t **dst; 319 int node; 320 321 /* 322 * for_each_online_node() can't be used at here. 323 * node_online_map is not set for hot-added nodes at this time, 324 * because we are halfway through initialization of the new node's 325 * structures. If for_each_online_node() is used, a new node's 326 * pg_data_ptrs will be not initialized. Instead of using it, 327 * pgdat_list[] is checked. 328 */ 329 for_each_node(node) { 330 if (pgdat_list[node]) { 331 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs; 332 memcpy(dst, pgdat_list, sizeof(pgdat_list)); 333 } 334 } 335 } 336 337 /** 338 * initialize_pernode_data - fixup per-cpu & per-node pointers 339 * 340 * Each node's per-node area has a copy of the global pg_data_t list, so 341 * we copy that to each node here, as well as setting the per-cpu pointer 342 * to the local node data structure. The active_cpus field of the per-node 343 * structure gets setup by the platform_cpu_init() function later. 344 */ 345 static void __init initialize_pernode_data(void) 346 { 347 int cpu, node; 348 349 scatter_node_data(); 350 351 #ifdef CONFIG_SMP 352 /* Set the node_data pointer for each per-cpu struct */ 353 for_each_possible_early_cpu(cpu) { 354 node = node_cpuid[cpu].nid; 355 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; 356 } 357 #else 358 { 359 struct cpuinfo_ia64 *cpu0_cpu_info; 360 cpu = 0; 361 node = node_cpuid[cpu].nid; 362 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + 363 ((char *)&per_cpu__cpu_info - __per_cpu_start)); 364 cpu0_cpu_info->node_data = mem_data[node].node_data; 365 } 366 #endif /* CONFIG_SMP */ 367 } 368 369 /** 370 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit 371 * node but fall back to any other node when __alloc_bootmem_node fails 372 * for best. 373 * @nid: node id 374 * @pernodesize: size of this node's pernode data 375 */ 376 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize) 377 { 378 void *ptr = NULL; 379 u8 best = 0xff; 380 int bestnode = -1, node, anynode = 0; 381 382 for_each_online_node(node) { 383 if (node_isset(node, memory_less_mask)) 384 continue; 385 else if (node_distance(nid, node) < best) { 386 best = node_distance(nid, node); 387 bestnode = node; 388 } 389 anynode = node; 390 } 391 392 if (bestnode == -1) 393 bestnode = anynode; 394 395 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize, 396 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 397 398 return ptr; 399 } 400 401 /** 402 * memory_less_nodes - allocate and initialize CPU only nodes pernode 403 * information. 404 */ 405 static void __init memory_less_nodes(void) 406 { 407 unsigned long pernodesize; 408 void *pernode; 409 int node; 410 411 for_each_node_mask(node, memory_less_mask) { 412 pernodesize = compute_pernodesize(node); 413 pernode = memory_less_node_alloc(node, pernodesize); 414 fill_pernode(node, __pa(pernode), pernodesize); 415 } 416 417 return; 418 } 419 420 /** 421 * find_memory - walk the EFI memory map and setup the bootmem allocator 422 * 423 * Called early in boot to setup the bootmem allocator, and to 424 * allocate the per-cpu and per-node structures. 425 */ 426 void __init find_memory(void) 427 { 428 int node; 429 430 reserve_memory(); 431 432 if (num_online_nodes() == 0) { 433 printk(KERN_ERR "node info missing!\n"); 434 node_set_online(0); 435 } 436 437 nodes_or(memory_less_mask, memory_less_mask, node_online_map); 438 min_low_pfn = -1; 439 max_low_pfn = 0; 440 441 /* These actually end up getting called by call_pernode_memory() */ 442 efi_memmap_walk(filter_rsvd_memory, build_node_maps); 443 efi_memmap_walk(filter_rsvd_memory, find_pernode_space); 444 efi_memmap_walk(find_max_min_low_pfn, NULL); 445 446 for_each_online_node(node) 447 if (bootmem_node_data[node].node_low_pfn) { 448 node_clear(node, memory_less_mask); 449 mem_data[node].min_pfn = ~0UL; 450 } 451 452 efi_memmap_walk(filter_memory, register_active_ranges); 453 454 /* 455 * Initialize the boot memory maps in reverse order since that's 456 * what the bootmem allocator expects 457 */ 458 for (node = MAX_NUMNODES - 1; node >= 0; node--) { 459 unsigned long pernode, pernodesize, map; 460 struct bootmem_data *bdp; 461 462 if (!node_online(node)) 463 continue; 464 else if (node_isset(node, memory_less_mask)) 465 continue; 466 467 bdp = &bootmem_node_data[node]; 468 pernode = mem_data[node].pernode_addr; 469 pernodesize = mem_data[node].pernode_size; 470 map = pernode + pernodesize; 471 472 init_bootmem_node(pgdat_list[node], 473 map>>PAGE_SHIFT, 474 bdp->node_min_pfn, 475 bdp->node_low_pfn); 476 } 477 478 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); 479 480 reserve_pernode_space(); 481 memory_less_nodes(); 482 initialize_pernode_data(); 483 484 max_pfn = max_low_pfn; 485 486 find_initrd(); 487 } 488 489 #ifdef CONFIG_SMP 490 /** 491 * per_cpu_init - setup per-cpu variables 492 * 493 * find_pernode_space() does most of this already, we just need to set 494 * local_per_cpu_offset 495 */ 496 void __cpuinit *per_cpu_init(void) 497 { 498 int cpu; 499 static int first_time = 1; 500 501 if (first_time) { 502 first_time = 0; 503 for_each_possible_early_cpu(cpu) 504 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; 505 } 506 507 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 508 } 509 #endif /* CONFIG_SMP */ 510 511 /** 512 * show_mem - give short summary of memory stats 513 * 514 * Shows a simple page count of reserved and used pages in the system. 515 * For discontig machines, it does this on a per-pgdat basis. 516 */ 517 void show_mem(void) 518 { 519 int i, total_reserved = 0; 520 int total_shared = 0, total_cached = 0; 521 unsigned long total_present = 0; 522 pg_data_t *pgdat; 523 524 printk(KERN_INFO "Mem-info:\n"); 525 show_free_areas(); 526 printk(KERN_INFO "Node memory in pages:\n"); 527 for_each_online_pgdat(pgdat) { 528 unsigned long present; 529 unsigned long flags; 530 int shared = 0, cached = 0, reserved = 0; 531 532 pgdat_resize_lock(pgdat, &flags); 533 present = pgdat->node_present_pages; 534 for(i = 0; i < pgdat->node_spanned_pages; i++) { 535 struct page *page; 536 if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) 537 touch_nmi_watchdog(); 538 if (pfn_valid(pgdat->node_start_pfn + i)) 539 page = pfn_to_page(pgdat->node_start_pfn + i); 540 else { 541 i = vmemmap_find_next_valid_pfn(pgdat->node_id, 542 i) - 1; 543 continue; 544 } 545 if (PageReserved(page)) 546 reserved++; 547 else if (PageSwapCache(page)) 548 cached++; 549 else if (page_count(page)) 550 shared += page_count(page)-1; 551 } 552 pgdat_resize_unlock(pgdat, &flags); 553 total_present += present; 554 total_reserved += reserved; 555 total_cached += cached; 556 total_shared += shared; 557 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " 558 "shrd: %10d, swpd: %10d\n", pgdat->node_id, 559 present, reserved, shared, cached); 560 } 561 printk(KERN_INFO "%ld pages of RAM\n", total_present); 562 printk(KERN_INFO "%d reserved pages\n", total_reserved); 563 printk(KERN_INFO "%d pages shared\n", total_shared); 564 printk(KERN_INFO "%d pages swap cached\n", total_cached); 565 printk(KERN_INFO "Total of %ld pages in page table cache\n", 566 quicklist_total_size()); 567 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); 568 } 569 570 /** 571 * call_pernode_memory - use SRAT to call callback functions with node info 572 * @start: physical start of range 573 * @len: length of range 574 * @arg: function to call for each range 575 * 576 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find 577 * out to which node a block of memory belongs. Ignore memory that we cannot 578 * identify, and split blocks that run across multiple nodes. 579 * 580 * Take this opportunity to round the start address up and the end address 581 * down to page boundaries. 582 */ 583 void call_pernode_memory(unsigned long start, unsigned long len, void *arg) 584 { 585 unsigned long rs, re, end = start + len; 586 void (*func)(unsigned long, unsigned long, int); 587 int i; 588 589 start = PAGE_ALIGN(start); 590 end &= PAGE_MASK; 591 if (start >= end) 592 return; 593 594 func = arg; 595 596 if (!num_node_memblks) { 597 /* No SRAT table, so assume one node (node 0) */ 598 if (start < end) 599 (*func)(start, end - start, 0); 600 return; 601 } 602 603 for (i = 0; i < num_node_memblks; i++) { 604 rs = max(start, node_memblk[i].start_paddr); 605 re = min(end, node_memblk[i].start_paddr + 606 node_memblk[i].size); 607 608 if (rs < re) 609 (*func)(rs, re - rs, node_memblk[i].nid); 610 611 if (re == end) 612 break; 613 } 614 } 615 616 /** 617 * count_node_pages - callback to build per-node memory info structures 618 * @start: physical start of range 619 * @len: length of range 620 * @node: node where this range resides 621 * 622 * Each node has it's own number of physical pages, DMAable pages, start, and 623 * end page frame number. This routine will be called by call_pernode_memory() 624 * for each piece of usable memory and will setup these values for each node. 625 * Very similar to build_maps(). 626 */ 627 static __init int count_node_pages(unsigned long start, unsigned long len, int node) 628 { 629 unsigned long end = start + len; 630 631 mem_data[node].num_physpages += len >> PAGE_SHIFT; 632 #ifdef CONFIG_ZONE_DMA 633 if (start <= __pa(MAX_DMA_ADDRESS)) 634 mem_data[node].num_dma_physpages += 635 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; 636 #endif 637 start = GRANULEROUNDDOWN(start); 638 start = ORDERROUNDDOWN(start); 639 end = GRANULEROUNDUP(end); 640 mem_data[node].max_pfn = max(mem_data[node].max_pfn, 641 end >> PAGE_SHIFT); 642 mem_data[node].min_pfn = min(mem_data[node].min_pfn, 643 start >> PAGE_SHIFT); 644 645 return 0; 646 } 647 648 /** 649 * paging_init - setup page tables 650 * 651 * paging_init() sets up the page tables for each node of the system and frees 652 * the bootmem allocator memory for general use. 653 */ 654 void __init paging_init(void) 655 { 656 unsigned long max_dma; 657 unsigned long pfn_offset = 0; 658 unsigned long max_pfn = 0; 659 int node; 660 unsigned long max_zone_pfns[MAX_NR_ZONES]; 661 662 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; 663 664 efi_memmap_walk(filter_rsvd_memory, count_node_pages); 665 666 sparse_memory_present_with_active_regions(MAX_NUMNODES); 667 sparse_init(); 668 669 #ifdef CONFIG_VIRTUAL_MEM_MAP 670 vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * 671 sizeof(struct page)); 672 vmem_map = (struct page *) vmalloc_end; 673 efi_memmap_walk(create_mem_map_page_table, NULL); 674 printk("Virtual mem_map starts at 0x%p\n", vmem_map); 675 #endif 676 677 for_each_online_node(node) { 678 num_physpages += mem_data[node].num_physpages; 679 pfn_offset = mem_data[node].min_pfn; 680 681 #ifdef CONFIG_VIRTUAL_MEM_MAP 682 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; 683 #endif 684 if (mem_data[node].max_pfn > max_pfn) 685 max_pfn = mem_data[node].max_pfn; 686 } 687 688 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 689 #ifdef CONFIG_ZONE_DMA 690 max_zone_pfns[ZONE_DMA] = max_dma; 691 #endif 692 max_zone_pfns[ZONE_NORMAL] = max_pfn; 693 free_area_init_nodes(max_zone_pfns); 694 695 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); 696 } 697 698 #ifdef CONFIG_MEMORY_HOTPLUG 699 pg_data_t *arch_alloc_nodedata(int nid) 700 { 701 unsigned long size = compute_pernodesize(nid); 702 703 return kzalloc(size, GFP_KERNEL); 704 } 705 706 void arch_free_nodedata(pg_data_t *pgdat) 707 { 708 kfree(pgdat); 709 } 710 711 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat) 712 { 713 pgdat_list[update_node] = update_pgdat; 714 scatter_node_data(); 715 } 716 #endif 717 718 #ifdef CONFIG_SPARSEMEM_VMEMMAP 719 int __meminit vmemmap_populate(struct page *start_page, 720 unsigned long size, int node) 721 { 722 return vmemmap_populate_basepages(start_page, size, node); 723 } 724 #endif 725