xref: /openbmc/linux/arch/ia64/mm/discontig.c (revision 87c2ce3b)
1 /*
2  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
3  * Copyright (c) 2001 Intel Corp.
4  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5  * Copyright (c) 2002 NEC Corp.
6  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7  * Copyright (c) 2004 Silicon Graphics, Inc
8  *	Russ Anderson <rja@sgi.com>
9  *	Jesse Barnes <jbarnes@sgi.com>
10  *	Jack Steiner <steiner@sgi.com>
11  */
12 
13 /*
14  * Platform initialization for Discontig Memory
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bootmem.h>
21 #include <linux/acpi.h>
22 #include <linux/efi.h>
23 #include <linux/nodemask.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlb.h>
26 #include <asm/meminit.h>
27 #include <asm/numa.h>
28 #include <asm/sections.h>
29 
30 /*
31  * Track per-node information needed to setup the boot memory allocator, the
32  * per-node areas, and the real VM.
33  */
34 struct early_node_data {
35 	struct ia64_node_data *node_data;
36 	pg_data_t *pgdat;
37 	unsigned long pernode_addr;
38 	unsigned long pernode_size;
39 	struct bootmem_data bootmem_data;
40 	unsigned long num_physpages;
41 	unsigned long num_dma_physpages;
42 	unsigned long min_pfn;
43 	unsigned long max_pfn;
44 };
45 
46 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
47 static nodemask_t memory_less_mask __initdata;
48 
49 /*
50  * To prevent cache aliasing effects, align per-node structures so that they
51  * start at addresses that are strided by node number.
52  */
53 #define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
54 #define NODEDATA_ALIGN(addr, node)						\
55 	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
56 	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
57 
58 /**
59  * build_node_maps - callback to setup bootmem structs for each node
60  * @start: physical start of range
61  * @len: length of range
62  * @node: node where this range resides
63  *
64  * We allocate a struct bootmem_data for each piece of memory that we wish to
65  * treat as a virtually contiguous block (i.e. each node). Each such block
66  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
67  * if necessary.  Any non-existent pages will simply be part of the virtual
68  * memmap.  We also update min_low_pfn and max_low_pfn here as we receive
69  * memory ranges from the caller.
70  */
71 static int __init build_node_maps(unsigned long start, unsigned long len,
72 				  int node)
73 {
74 	unsigned long cstart, epfn, end = start + len;
75 	struct bootmem_data *bdp = &mem_data[node].bootmem_data;
76 
77 	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
78 	cstart = GRANULEROUNDDOWN(start);
79 
80 	if (!bdp->node_low_pfn) {
81 		bdp->node_boot_start = cstart;
82 		bdp->node_low_pfn = epfn;
83 	} else {
84 		bdp->node_boot_start = min(cstart, bdp->node_boot_start);
85 		bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
86 	}
87 
88 	min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT);
89 	max_low_pfn = max(max_low_pfn, bdp->node_low_pfn);
90 
91 	return 0;
92 }
93 
94 /**
95  * early_nr_cpus_node - return number of cpus on a given node
96  * @node: node to check
97  *
98  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
99  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
100  * called yet.  Note that node 0 will also count all non-existent cpus.
101  */
102 static int __init early_nr_cpus_node(int node)
103 {
104 	int cpu, n = 0;
105 
106 	for (cpu = 0; cpu < NR_CPUS; cpu++)
107 		if (node == node_cpuid[cpu].nid)
108 			n++;
109 
110 	return n;
111 }
112 
113 /**
114  * compute_pernodesize - compute size of pernode data
115  * @node: the node id.
116  */
117 static unsigned long __init compute_pernodesize(int node)
118 {
119 	unsigned long pernodesize = 0, cpus;
120 
121 	cpus = early_nr_cpus_node(node);
122 	pernodesize += PERCPU_PAGE_SIZE * cpus;
123 	pernodesize += node * L1_CACHE_BYTES;
124 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
125 	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
126 	pernodesize = PAGE_ALIGN(pernodesize);
127 	return pernodesize;
128 }
129 
130 /**
131  * per_cpu_node_setup - setup per-cpu areas on each node
132  * @cpu_data: per-cpu area on this node
133  * @node: node to setup
134  *
135  * Copy the static per-cpu data into the region we just set aside and then
136  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
137  * the end of the area.
138  */
139 static void *per_cpu_node_setup(void *cpu_data, int node)
140 {
141 #ifdef CONFIG_SMP
142 	int cpu;
143 
144 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
145 		if (node == node_cpuid[cpu].nid) {
146 			memcpy(__va(cpu_data), __phys_per_cpu_start,
147 			       __per_cpu_end - __per_cpu_start);
148 			__per_cpu_offset[cpu] = (char*)__va(cpu_data) -
149 				__per_cpu_start;
150 			cpu_data += PERCPU_PAGE_SIZE;
151 		}
152 	}
153 #endif
154 	return cpu_data;
155 }
156 
157 /**
158  * fill_pernode - initialize pernode data.
159  * @node: the node id.
160  * @pernode: physical address of pernode data
161  * @pernodesize: size of the pernode data
162  */
163 static void __init fill_pernode(int node, unsigned long pernode,
164 	unsigned long pernodesize)
165 {
166 	void *cpu_data;
167 	int cpus = early_nr_cpus_node(node);
168 	struct bootmem_data *bdp = &mem_data[node].bootmem_data;
169 
170 	mem_data[node].pernode_addr = pernode;
171 	mem_data[node].pernode_size = pernodesize;
172 	memset(__va(pernode), 0, pernodesize);
173 
174 	cpu_data = (void *)pernode;
175 	pernode += PERCPU_PAGE_SIZE * cpus;
176 	pernode += node * L1_CACHE_BYTES;
177 
178 	mem_data[node].pgdat = __va(pernode);
179 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
180 
181 	mem_data[node].node_data = __va(pernode);
182 	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
183 
184 	mem_data[node].pgdat->bdata = bdp;
185 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
186 
187 	cpu_data = per_cpu_node_setup(cpu_data, node);
188 
189 	return;
190 }
191 
192 /**
193  * find_pernode_space - allocate memory for memory map and per-node structures
194  * @start: physical start of range
195  * @len: length of range
196  * @node: node where this range resides
197  *
198  * This routine reserves space for the per-cpu data struct, the list of
199  * pg_data_ts and the per-node data struct.  Each node will have something like
200  * the following in the first chunk of addr. space large enough to hold it.
201  *
202  *    ________________________
203  *   |                        |
204  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
205  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
206  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
207  *   |------------------------|
208  *   |   local pg_data_t *    |
209  *   |------------------------|
210  *   |  local ia64_node_data  |
211  *   |------------------------|
212  *   |          ???           |
213  *   |________________________|
214  *
215  * Once this space has been set aside, the bootmem maps are initialized.  We
216  * could probably move the allocation of the per-cpu and ia64_node_data space
217  * outside of this function and use alloc_bootmem_node(), but doing it here
218  * is straightforward and we get the alignments we want so...
219  */
220 static int __init find_pernode_space(unsigned long start, unsigned long len,
221 				     int node)
222 {
223 	unsigned long epfn;
224 	unsigned long pernodesize = 0, pernode, pages, mapsize;
225 	struct bootmem_data *bdp = &mem_data[node].bootmem_data;
226 
227 	epfn = (start + len) >> PAGE_SHIFT;
228 
229 	pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
230 	mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
231 
232 	/*
233 	 * Make sure this memory falls within this node's usable memory
234 	 * since we may have thrown some away in build_maps().
235 	 */
236 	if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
237 		return 0;
238 
239 	/* Don't setup this node's local space twice... */
240 	if (mem_data[node].pernode_addr)
241 		return 0;
242 
243 	/*
244 	 * Calculate total size needed, incl. what's necessary
245 	 * for good alignment and alias prevention.
246 	 */
247 	pernodesize = compute_pernodesize(node);
248 	pernode = NODEDATA_ALIGN(start, node);
249 
250 	/* Is this range big enough for what we want to store here? */
251 	if (start + len > (pernode + pernodesize + mapsize))
252 		fill_pernode(node, pernode, pernodesize);
253 
254 	return 0;
255 }
256 
257 /**
258  * free_node_bootmem - free bootmem allocator memory for use
259  * @start: physical start of range
260  * @len: length of range
261  * @node: node where this range resides
262  *
263  * Simply calls the bootmem allocator to free the specified ranged from
264  * the given pg_data_t's bdata struct.  After this function has been called
265  * for all the entries in the EFI memory map, the bootmem allocator will
266  * be ready to service allocation requests.
267  */
268 static int __init free_node_bootmem(unsigned long start, unsigned long len,
269 				    int node)
270 {
271 	free_bootmem_node(mem_data[node].pgdat, start, len);
272 
273 	return 0;
274 }
275 
276 /**
277  * reserve_pernode_space - reserve memory for per-node space
278  *
279  * Reserve the space used by the bootmem maps & per-node space in the boot
280  * allocator so that when we actually create the real mem maps we don't
281  * use their memory.
282  */
283 static void __init reserve_pernode_space(void)
284 {
285 	unsigned long base, size, pages;
286 	struct bootmem_data *bdp;
287 	int node;
288 
289 	for_each_online_node(node) {
290 		pg_data_t *pdp = mem_data[node].pgdat;
291 
292 		if (node_isset(node, memory_less_mask))
293 			continue;
294 
295 		bdp = pdp->bdata;
296 
297 		/* First the bootmem_map itself */
298 		pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
299 		size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
300 		base = __pa(bdp->node_bootmem_map);
301 		reserve_bootmem_node(pdp, base, size);
302 
303 		/* Now the per-node space */
304 		size = mem_data[node].pernode_size;
305 		base = __pa(mem_data[node].pernode_addr);
306 		reserve_bootmem_node(pdp, base, size);
307 	}
308 }
309 
310 /**
311  * initialize_pernode_data - fixup per-cpu & per-node pointers
312  *
313  * Each node's per-node area has a copy of the global pg_data_t list, so
314  * we copy that to each node here, as well as setting the per-cpu pointer
315  * to the local node data structure.  The active_cpus field of the per-node
316  * structure gets setup by the platform_cpu_init() function later.
317  */
318 static void __init initialize_pernode_data(void)
319 {
320 	pg_data_t *pgdat_list[MAX_NUMNODES];
321 	int cpu, node;
322 
323 	for_each_online_node(node)
324 		pgdat_list[node] = mem_data[node].pgdat;
325 
326 	/* Copy the pg_data_t list to each node and init the node field */
327 	for_each_online_node(node) {
328 		memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list,
329 		       sizeof(pgdat_list));
330 	}
331 #ifdef CONFIG_SMP
332 	/* Set the node_data pointer for each per-cpu struct */
333 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
334 		node = node_cpuid[cpu].nid;
335 		per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
336 	}
337 #else
338 	{
339 		struct cpuinfo_ia64 *cpu0_cpu_info;
340 		cpu = 0;
341 		node = node_cpuid[cpu].nid;
342 		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
343 			((char *)&per_cpu__cpu_info - __per_cpu_start));
344 		cpu0_cpu_info->node_data = mem_data[node].node_data;
345 	}
346 #endif /* CONFIG_SMP */
347 }
348 
349 /**
350  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
351  * 	node but fall back to any other node when __alloc_bootmem_node fails
352  *	for best.
353  * @nid: node id
354  * @pernodesize: size of this node's pernode data
355  */
356 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
357 {
358 	void *ptr = NULL;
359 	u8 best = 0xff;
360 	int bestnode = -1, node, anynode = 0;
361 
362 	for_each_online_node(node) {
363 		if (node_isset(node, memory_less_mask))
364 			continue;
365 		else if (node_distance(nid, node) < best) {
366 			best = node_distance(nid, node);
367 			bestnode = node;
368 		}
369 		anynode = node;
370 	}
371 
372 	if (bestnode == -1)
373 		bestnode = anynode;
374 
375 	ptr = __alloc_bootmem_node(mem_data[bestnode].pgdat, pernodesize,
376 		PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
377 
378 	return ptr;
379 }
380 
381 /**
382  * pgdat_insert - insert the pgdat into global pgdat_list
383  * @pgdat: the pgdat for a node.
384  */
385 static void __init pgdat_insert(pg_data_t *pgdat)
386 {
387 	pg_data_t *prev = NULL, *next;
388 
389 	for_each_pgdat(next)
390 		if (pgdat->node_id < next->node_id)
391 			break;
392 		else
393 			prev = next;
394 
395 	if (prev) {
396 		prev->pgdat_next = pgdat;
397 		pgdat->pgdat_next = next;
398 	} else {
399 		pgdat->pgdat_next = pgdat_list;
400 		pgdat_list = pgdat;
401 	}
402 
403 	return;
404 }
405 
406 /**
407  * memory_less_nodes - allocate and initialize CPU only nodes pernode
408  *	information.
409  */
410 static void __init memory_less_nodes(void)
411 {
412 	unsigned long pernodesize;
413 	void *pernode;
414 	int node;
415 
416 	for_each_node_mask(node, memory_less_mask) {
417 		pernodesize = compute_pernodesize(node);
418 		pernode = memory_less_node_alloc(node, pernodesize);
419 		fill_pernode(node, __pa(pernode), pernodesize);
420 	}
421 
422 	return;
423 }
424 
425 #ifdef CONFIG_SPARSEMEM
426 /**
427  * register_sparse_mem - notify SPARSEMEM that this memory range exists.
428  * @start: physical start of range
429  * @end: physical end of range
430  * @arg: unused
431  *
432  * Simply calls SPARSEMEM to register memory section(s).
433  */
434 static int __init register_sparse_mem(unsigned long start, unsigned long end,
435 	void *arg)
436 {
437 	int nid;
438 
439 	start = __pa(start) >> PAGE_SHIFT;
440 	end = __pa(end) >> PAGE_SHIFT;
441 	nid = early_pfn_to_nid(start);
442 	memory_present(nid, start, end);
443 
444 	return 0;
445 }
446 
447 static void __init arch_sparse_init(void)
448 {
449 	efi_memmap_walk(register_sparse_mem, NULL);
450 	sparse_init();
451 }
452 #else
453 #define arch_sparse_init() do {} while (0)
454 #endif
455 
456 /**
457  * find_memory - walk the EFI memory map and setup the bootmem allocator
458  *
459  * Called early in boot to setup the bootmem allocator, and to
460  * allocate the per-cpu and per-node structures.
461  */
462 void __init find_memory(void)
463 {
464 	int node;
465 
466 	reserve_memory();
467 
468 	if (num_online_nodes() == 0) {
469 		printk(KERN_ERR "node info missing!\n");
470 		node_set_online(0);
471 	}
472 
473 	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
474 	min_low_pfn = -1;
475 	max_low_pfn = 0;
476 
477 	/* These actually end up getting called by call_pernode_memory() */
478 	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
479 	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
480 
481 	for_each_online_node(node)
482 		if (mem_data[node].bootmem_data.node_low_pfn) {
483 			node_clear(node, memory_less_mask);
484 			mem_data[node].min_pfn = ~0UL;
485 		}
486 	/*
487 	 * Initialize the boot memory maps in reverse order since that's
488 	 * what the bootmem allocator expects
489 	 */
490 	for (node = MAX_NUMNODES - 1; node >= 0; node--) {
491 		unsigned long pernode, pernodesize, map;
492 		struct bootmem_data *bdp;
493 
494 		if (!node_online(node))
495 			continue;
496 		else if (node_isset(node, memory_less_mask))
497 			continue;
498 
499 		bdp = &mem_data[node].bootmem_data;
500 		pernode = mem_data[node].pernode_addr;
501 		pernodesize = mem_data[node].pernode_size;
502 		map = pernode + pernodesize;
503 
504 		init_bootmem_node(mem_data[node].pgdat,
505 				  map>>PAGE_SHIFT,
506 				  bdp->node_boot_start>>PAGE_SHIFT,
507 				  bdp->node_low_pfn);
508 	}
509 
510 	efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
511 
512 	reserve_pernode_space();
513 	memory_less_nodes();
514 	initialize_pernode_data();
515 
516 	max_pfn = max_low_pfn;
517 
518 	find_initrd();
519 }
520 
521 #ifdef CONFIG_SMP
522 /**
523  * per_cpu_init - setup per-cpu variables
524  *
525  * find_pernode_space() does most of this already, we just need to set
526  * local_per_cpu_offset
527  */
528 void *per_cpu_init(void)
529 {
530 	int cpu;
531 
532 	if (smp_processor_id() != 0)
533 		return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
534 
535 	for (cpu = 0; cpu < NR_CPUS; cpu++)
536 		per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
537 
538 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
539 }
540 #endif /* CONFIG_SMP */
541 
542 /**
543  * show_mem - give short summary of memory stats
544  *
545  * Shows a simple page count of reserved and used pages in the system.
546  * For discontig machines, it does this on a per-pgdat basis.
547  */
548 void show_mem(void)
549 {
550 	int i, total_reserved = 0;
551 	int total_shared = 0, total_cached = 0;
552 	unsigned long total_present = 0;
553 	pg_data_t *pgdat;
554 
555 	printk("Mem-info:\n");
556 	show_free_areas();
557 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
558 	for_each_pgdat(pgdat) {
559 		unsigned long present;
560 		unsigned long flags;
561 		int shared = 0, cached = 0, reserved = 0;
562 
563 		printk("Node ID: %d\n", pgdat->node_id);
564 		pgdat_resize_lock(pgdat, &flags);
565 		present = pgdat->node_present_pages;
566 		for(i = 0; i < pgdat->node_spanned_pages; i++) {
567 			struct page *page;
568 			if (pfn_valid(pgdat->node_start_pfn + i))
569 				page = pfn_to_page(pgdat->node_start_pfn + i);
570 			else
571 				continue;
572 			if (PageReserved(page))
573 				reserved++;
574 			else if (PageSwapCache(page))
575 				cached++;
576 			else if (page_count(page))
577 				shared += page_count(page)-1;
578 		}
579 		pgdat_resize_unlock(pgdat, &flags);
580 		total_present += present;
581 		total_reserved += reserved;
582 		total_cached += cached;
583 		total_shared += shared;
584 		printk("\t%ld pages of RAM\n", present);
585 		printk("\t%d reserved pages\n", reserved);
586 		printk("\t%d pages shared\n", shared);
587 		printk("\t%d pages swap cached\n", cached);
588 	}
589 	printk("%ld pages of RAM\n", total_present);
590 	printk("%d reserved pages\n", total_reserved);
591 	printk("%d pages shared\n", total_shared);
592 	printk("%d pages swap cached\n", total_cached);
593 	printk("Total of %ld pages in page table cache\n",
594 		pgtable_quicklist_total_size());
595 	printk("%d free buffer pages\n", nr_free_buffer_pages());
596 }
597 
598 /**
599  * call_pernode_memory - use SRAT to call callback functions with node info
600  * @start: physical start of range
601  * @len: length of range
602  * @arg: function to call for each range
603  *
604  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
605  * out to which node a block of memory belongs.  Ignore memory that we cannot
606  * identify, and split blocks that run across multiple nodes.
607  *
608  * Take this opportunity to round the start address up and the end address
609  * down to page boundaries.
610  */
611 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
612 {
613 	unsigned long rs, re, end = start + len;
614 	void (*func)(unsigned long, unsigned long, int);
615 	int i;
616 
617 	start = PAGE_ALIGN(start);
618 	end &= PAGE_MASK;
619 	if (start >= end)
620 		return;
621 
622 	func = arg;
623 
624 	if (!num_node_memblks) {
625 		/* No SRAT table, so assume one node (node 0) */
626 		if (start < end)
627 			(*func)(start, end - start, 0);
628 		return;
629 	}
630 
631 	for (i = 0; i < num_node_memblks; i++) {
632 		rs = max(start, node_memblk[i].start_paddr);
633 		re = min(end, node_memblk[i].start_paddr +
634 			 node_memblk[i].size);
635 
636 		if (rs < re)
637 			(*func)(rs, re - rs, node_memblk[i].nid);
638 
639 		if (re == end)
640 			break;
641 	}
642 }
643 
644 /**
645  * count_node_pages - callback to build per-node memory info structures
646  * @start: physical start of range
647  * @len: length of range
648  * @node: node where this range resides
649  *
650  * Each node has it's own number of physical pages, DMAable pages, start, and
651  * end page frame number.  This routine will be called by call_pernode_memory()
652  * for each piece of usable memory and will setup these values for each node.
653  * Very similar to build_maps().
654  */
655 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
656 {
657 	unsigned long end = start + len;
658 
659 	mem_data[node].num_physpages += len >> PAGE_SHIFT;
660 	if (start <= __pa(MAX_DMA_ADDRESS))
661 		mem_data[node].num_dma_physpages +=
662 			(min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
663 	start = GRANULEROUNDDOWN(start);
664 	start = ORDERROUNDDOWN(start);
665 	end = GRANULEROUNDUP(end);
666 	mem_data[node].max_pfn = max(mem_data[node].max_pfn,
667 				     end >> PAGE_SHIFT);
668 	mem_data[node].min_pfn = min(mem_data[node].min_pfn,
669 				     start >> PAGE_SHIFT);
670 
671 	return 0;
672 }
673 
674 /**
675  * paging_init - setup page tables
676  *
677  * paging_init() sets up the page tables for each node of the system and frees
678  * the bootmem allocator memory for general use.
679  */
680 void __init paging_init(void)
681 {
682 	unsigned long max_dma;
683 	unsigned long zones_size[MAX_NR_ZONES];
684 	unsigned long zholes_size[MAX_NR_ZONES];
685 	unsigned long pfn_offset = 0;
686 	int node;
687 
688 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
689 
690 	arch_sparse_init();
691 
692 	efi_memmap_walk(filter_rsvd_memory, count_node_pages);
693 
694 #ifdef CONFIG_VIRTUAL_MEM_MAP
695 	vmalloc_end -= PAGE_ALIGN(max_low_pfn * sizeof(struct page));
696 	vmem_map = (struct page *) vmalloc_end;
697 	efi_memmap_walk(create_mem_map_page_table, NULL);
698 	printk("Virtual mem_map starts at 0x%p\n", vmem_map);
699 #endif
700 
701 	for_each_online_node(node) {
702 		memset(zones_size, 0, sizeof(zones_size));
703 		memset(zholes_size, 0, sizeof(zholes_size));
704 
705 		num_physpages += mem_data[node].num_physpages;
706 
707 		if (mem_data[node].min_pfn >= max_dma) {
708 			/* All of this node's memory is above ZONE_DMA */
709 			zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
710 				mem_data[node].min_pfn;
711 			zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn -
712 				mem_data[node].min_pfn -
713 				mem_data[node].num_physpages;
714 		} else if (mem_data[node].max_pfn < max_dma) {
715 			/* All of this node's memory is in ZONE_DMA */
716 			zones_size[ZONE_DMA] = mem_data[node].max_pfn -
717 				mem_data[node].min_pfn;
718 			zholes_size[ZONE_DMA] = mem_data[node].max_pfn -
719 				mem_data[node].min_pfn -
720 				mem_data[node].num_dma_physpages;
721 		} else {
722 			/* This node has memory in both zones */
723 			zones_size[ZONE_DMA] = max_dma -
724 				mem_data[node].min_pfn;
725 			zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
726 				mem_data[node].num_dma_physpages;
727 			zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
728 				max_dma;
729 			zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] -
730 				(mem_data[node].num_physpages -
731 				 mem_data[node].num_dma_physpages);
732 		}
733 
734 		pfn_offset = mem_data[node].min_pfn;
735 
736 #ifdef CONFIG_VIRTUAL_MEM_MAP
737 		NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
738 #endif
739 		free_area_init_node(node, NODE_DATA(node), zones_size,
740 				    pfn_offset, zholes_size);
741 	}
742 
743 	/*
744 	 * Make memory less nodes become a member of the known nodes.
745 	 */
746 	for_each_node_mask(node, memory_less_mask)
747 		pgdat_insert(mem_data[node].pgdat);
748 
749 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
750 }
751