1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. 4 * Copyright (c) 2001 Intel Corp. 5 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> 6 * Copyright (c) 2002 NEC Corp. 7 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> 8 * Copyright (c) 2004 Silicon Graphics, Inc 9 * Russ Anderson <rja@sgi.com> 10 * Jesse Barnes <jbarnes@sgi.com> 11 * Jack Steiner <steiner@sgi.com> 12 */ 13 14 /* 15 * Platform initialization for Discontig Memory 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/nmi.h> 21 #include <linux/swap.h> 22 #include <linux/memblock.h> 23 #include <linux/acpi.h> 24 #include <linux/efi.h> 25 #include <linux/nodemask.h> 26 #include <linux/slab.h> 27 #include <asm/tlb.h> 28 #include <asm/meminit.h> 29 #include <asm/numa.h> 30 #include <asm/sections.h> 31 32 /* 33 * Track per-node information needed to setup the boot memory allocator, the 34 * per-node areas, and the real VM. 35 */ 36 struct early_node_data { 37 struct ia64_node_data *node_data; 38 unsigned long pernode_addr; 39 unsigned long pernode_size; 40 unsigned long min_pfn; 41 unsigned long max_pfn; 42 }; 43 44 static struct early_node_data mem_data[MAX_NUMNODES] __initdata; 45 static nodemask_t memory_less_mask __initdata; 46 47 pg_data_t *pgdat_list[MAX_NUMNODES]; 48 49 /* 50 * To prevent cache aliasing effects, align per-node structures so that they 51 * start at addresses that are strided by node number. 52 */ 53 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024) 54 #define NODEDATA_ALIGN(addr, node) \ 55 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \ 56 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1))) 57 58 /** 59 * build_node_maps - callback to setup mem_data structs for each node 60 * @start: physical start of range 61 * @len: length of range 62 * @node: node where this range resides 63 * 64 * Detect extents of each piece of memory that we wish to 65 * treat as a virtually contiguous block (i.e. each node). Each such block 66 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down 67 * if necessary. Any non-existent pages will simply be part of the virtual 68 * memmap. 69 */ 70 static int __init build_node_maps(unsigned long start, unsigned long len, 71 int node) 72 { 73 unsigned long spfn, epfn, end = start + len; 74 75 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; 76 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT; 77 78 if (!mem_data[node].min_pfn) { 79 mem_data[node].min_pfn = spfn; 80 mem_data[node].max_pfn = epfn; 81 } else { 82 mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn); 83 mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn); 84 } 85 86 return 0; 87 } 88 89 /** 90 * early_nr_cpus_node - return number of cpus on a given node 91 * @node: node to check 92 * 93 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because 94 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been 95 * called yet. Note that node 0 will also count all non-existent cpus. 96 */ 97 static int __meminit early_nr_cpus_node(int node) 98 { 99 int cpu, n = 0; 100 101 for_each_possible_early_cpu(cpu) 102 if (node == node_cpuid[cpu].nid) 103 n++; 104 105 return n; 106 } 107 108 /** 109 * compute_pernodesize - compute size of pernode data 110 * @node: the node id. 111 */ 112 static unsigned long __meminit compute_pernodesize(int node) 113 { 114 unsigned long pernodesize = 0, cpus; 115 116 cpus = early_nr_cpus_node(node); 117 pernodesize += PERCPU_PAGE_SIZE * cpus; 118 pernodesize += node * L1_CACHE_BYTES; 119 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 120 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 121 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 122 pernodesize = PAGE_ALIGN(pernodesize); 123 return pernodesize; 124 } 125 126 /** 127 * per_cpu_node_setup - setup per-cpu areas on each node 128 * @cpu_data: per-cpu area on this node 129 * @node: node to setup 130 * 131 * Copy the static per-cpu data into the region we just set aside and then 132 * setup __per_cpu_offset for each CPU on this node. Return a pointer to 133 * the end of the area. 134 */ 135 static void *per_cpu_node_setup(void *cpu_data, int node) 136 { 137 #ifdef CONFIG_SMP 138 int cpu; 139 140 for_each_possible_early_cpu(cpu) { 141 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start; 142 143 if (node != node_cpuid[cpu].nid) 144 continue; 145 146 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start); 147 __per_cpu_offset[cpu] = (char *)__va(cpu_data) - 148 __per_cpu_start; 149 150 /* 151 * percpu area for cpu0 is moved from the __init area 152 * which is setup by head.S and used till this point. 153 * Update ar.k3. This move is ensures that percpu 154 * area for cpu0 is on the correct node and its 155 * virtual address isn't insanely far from other 156 * percpu areas which is important for congruent 157 * percpu allocator. 158 */ 159 if (cpu == 0) 160 ia64_set_kr(IA64_KR_PER_CPU_DATA, 161 (unsigned long)cpu_data - 162 (unsigned long)__per_cpu_start); 163 164 cpu_data += PERCPU_PAGE_SIZE; 165 } 166 #endif 167 return cpu_data; 168 } 169 170 #ifdef CONFIG_SMP 171 /** 172 * setup_per_cpu_areas - setup percpu areas 173 * 174 * Arch code has already allocated and initialized percpu areas. All 175 * this function has to do is to teach the determined layout to the 176 * dynamic percpu allocator, which happens to be more complex than 177 * creating whole new ones using helpers. 178 */ 179 void __init setup_per_cpu_areas(void) 180 { 181 struct pcpu_alloc_info *ai; 182 struct pcpu_group_info *gi; 183 unsigned int *cpu_map; 184 void *base; 185 unsigned long base_offset; 186 unsigned int cpu; 187 ssize_t static_size, reserved_size, dyn_size; 188 int node, prev_node, unit, nr_units; 189 190 ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids); 191 if (!ai) 192 panic("failed to allocate pcpu_alloc_info"); 193 cpu_map = ai->groups[0].cpu_map; 194 195 /* determine base */ 196 base = (void *)ULONG_MAX; 197 for_each_possible_cpu(cpu) 198 base = min(base, 199 (void *)(__per_cpu_offset[cpu] + __per_cpu_start)); 200 base_offset = (void *)__per_cpu_start - base; 201 202 /* build cpu_map, units are grouped by node */ 203 unit = 0; 204 for_each_node(node) 205 for_each_possible_cpu(cpu) 206 if (node == node_cpuid[cpu].nid) 207 cpu_map[unit++] = cpu; 208 nr_units = unit; 209 210 /* set basic parameters */ 211 static_size = __per_cpu_end - __per_cpu_start; 212 reserved_size = PERCPU_MODULE_RESERVE; 213 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; 214 if (dyn_size < 0) 215 panic("percpu area overflow static=%zd reserved=%zd\n", 216 static_size, reserved_size); 217 218 ai->static_size = static_size; 219 ai->reserved_size = reserved_size; 220 ai->dyn_size = dyn_size; 221 ai->unit_size = PERCPU_PAGE_SIZE; 222 ai->atom_size = PAGE_SIZE; 223 ai->alloc_size = PERCPU_PAGE_SIZE; 224 225 /* 226 * CPUs are put into groups according to node. Walk cpu_map 227 * and create new groups at node boundaries. 228 */ 229 prev_node = NUMA_NO_NODE; 230 ai->nr_groups = 0; 231 for (unit = 0; unit < nr_units; unit++) { 232 cpu = cpu_map[unit]; 233 node = node_cpuid[cpu].nid; 234 235 if (node == prev_node) { 236 gi->nr_units++; 237 continue; 238 } 239 prev_node = node; 240 241 gi = &ai->groups[ai->nr_groups++]; 242 gi->nr_units = 1; 243 gi->base_offset = __per_cpu_offset[cpu] + base_offset; 244 gi->cpu_map = &cpu_map[unit]; 245 } 246 247 pcpu_setup_first_chunk(ai, base); 248 pcpu_free_alloc_info(ai); 249 } 250 #endif 251 252 /** 253 * fill_pernode - initialize pernode data. 254 * @node: the node id. 255 * @pernode: physical address of pernode data 256 * @pernodesize: size of the pernode data 257 */ 258 static void __init fill_pernode(int node, unsigned long pernode, 259 unsigned long pernodesize) 260 { 261 void *cpu_data; 262 int cpus = early_nr_cpus_node(node); 263 264 mem_data[node].pernode_addr = pernode; 265 mem_data[node].pernode_size = pernodesize; 266 memset(__va(pernode), 0, pernodesize); 267 268 cpu_data = (void *)pernode; 269 pernode += PERCPU_PAGE_SIZE * cpus; 270 pernode += node * L1_CACHE_BYTES; 271 272 pgdat_list[node] = __va(pernode); 273 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 274 275 mem_data[node].node_data = __va(pernode); 276 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 277 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 278 279 cpu_data = per_cpu_node_setup(cpu_data, node); 280 281 return; 282 } 283 284 /** 285 * find_pernode_space - allocate memory for memory map and per-node structures 286 * @start: physical start of range 287 * @len: length of range 288 * @node: node where this range resides 289 * 290 * This routine reserves space for the per-cpu data struct, the list of 291 * pg_data_ts and the per-node data struct. Each node will have something like 292 * the following in the first chunk of addr. space large enough to hold it. 293 * 294 * ________________________ 295 * | | 296 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first 297 * | PERCPU_PAGE_SIZE * | start and length big enough 298 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. 299 * |------------------------| 300 * | local pg_data_t * | 301 * |------------------------| 302 * | local ia64_node_data | 303 * |------------------------| 304 * | ??? | 305 * |________________________| 306 * 307 * Once this space has been set aside, the bootmem maps are initialized. We 308 * could probably move the allocation of the per-cpu and ia64_node_data space 309 * outside of this function and use alloc_bootmem_node(), but doing it here 310 * is straightforward and we get the alignments we want so... 311 */ 312 static int __init find_pernode_space(unsigned long start, unsigned long len, 313 int node) 314 { 315 unsigned long spfn, epfn; 316 unsigned long pernodesize = 0, pernode; 317 318 spfn = start >> PAGE_SHIFT; 319 epfn = (start + len) >> PAGE_SHIFT; 320 321 /* 322 * Make sure this memory falls within this node's usable memory 323 * since we may have thrown some away in build_maps(). 324 */ 325 if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn) 326 return 0; 327 328 /* Don't setup this node's local space twice... */ 329 if (mem_data[node].pernode_addr) 330 return 0; 331 332 /* 333 * Calculate total size needed, incl. what's necessary 334 * for good alignment and alias prevention. 335 */ 336 pernodesize = compute_pernodesize(node); 337 pernode = NODEDATA_ALIGN(start, node); 338 339 /* Is this range big enough for what we want to store here? */ 340 if (start + len > (pernode + pernodesize)) 341 fill_pernode(node, pernode, pernodesize); 342 343 return 0; 344 } 345 346 /** 347 * reserve_pernode_space - reserve memory for per-node space 348 * 349 * Reserve the space used by the bootmem maps & per-node space in the boot 350 * allocator so that when we actually create the real mem maps we don't 351 * use their memory. 352 */ 353 static void __init reserve_pernode_space(void) 354 { 355 unsigned long base, size; 356 int node; 357 358 for_each_online_node(node) { 359 if (node_isset(node, memory_less_mask)) 360 continue; 361 362 /* Now the per-node space */ 363 size = mem_data[node].pernode_size; 364 base = __pa(mem_data[node].pernode_addr); 365 memblock_reserve(base, size); 366 } 367 } 368 369 static void __meminit scatter_node_data(void) 370 { 371 pg_data_t **dst; 372 int node; 373 374 /* 375 * for_each_online_node() can't be used at here. 376 * node_online_map is not set for hot-added nodes at this time, 377 * because we are halfway through initialization of the new node's 378 * structures. If for_each_online_node() is used, a new node's 379 * pg_data_ptrs will be not initialized. Instead of using it, 380 * pgdat_list[] is checked. 381 */ 382 for_each_node(node) { 383 if (pgdat_list[node]) { 384 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs; 385 memcpy(dst, pgdat_list, sizeof(pgdat_list)); 386 } 387 } 388 } 389 390 /** 391 * initialize_pernode_data - fixup per-cpu & per-node pointers 392 * 393 * Each node's per-node area has a copy of the global pg_data_t list, so 394 * we copy that to each node here, as well as setting the per-cpu pointer 395 * to the local node data structure. 396 */ 397 static void __init initialize_pernode_data(void) 398 { 399 int cpu, node; 400 401 scatter_node_data(); 402 403 #ifdef CONFIG_SMP 404 /* Set the node_data pointer for each per-cpu struct */ 405 for_each_possible_early_cpu(cpu) { 406 node = node_cpuid[cpu].nid; 407 per_cpu(ia64_cpu_info, cpu).node_data = 408 mem_data[node].node_data; 409 } 410 #else 411 { 412 struct cpuinfo_ia64 *cpu0_cpu_info; 413 cpu = 0; 414 node = node_cpuid[cpu].nid; 415 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + 416 ((char *)&ia64_cpu_info - __per_cpu_start)); 417 cpu0_cpu_info->node_data = mem_data[node].node_data; 418 } 419 #endif /* CONFIG_SMP */ 420 } 421 422 /** 423 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit 424 * node but fall back to any other node when __alloc_bootmem_node fails 425 * for best. 426 * @nid: node id 427 * @pernodesize: size of this node's pernode data 428 */ 429 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize) 430 { 431 void *ptr = NULL; 432 u8 best = 0xff; 433 int bestnode = NUMA_NO_NODE, node, anynode = 0; 434 435 for_each_online_node(node) { 436 if (node_isset(node, memory_less_mask)) 437 continue; 438 else if (node_distance(nid, node) < best) { 439 best = node_distance(nid, node); 440 bestnode = node; 441 } 442 anynode = node; 443 } 444 445 if (bestnode == NUMA_NO_NODE) 446 bestnode = anynode; 447 448 ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE, 449 __pa(MAX_DMA_ADDRESS), 450 MEMBLOCK_ALLOC_ACCESSIBLE, 451 bestnode); 452 if (!ptr) 453 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n", 454 __func__, pernodesize, PERCPU_PAGE_SIZE, bestnode, 455 __pa(MAX_DMA_ADDRESS)); 456 457 return ptr; 458 } 459 460 /** 461 * memory_less_nodes - allocate and initialize CPU only nodes pernode 462 * information. 463 */ 464 static void __init memory_less_nodes(void) 465 { 466 unsigned long pernodesize; 467 void *pernode; 468 int node; 469 470 for_each_node_mask(node, memory_less_mask) { 471 pernodesize = compute_pernodesize(node); 472 pernode = memory_less_node_alloc(node, pernodesize); 473 fill_pernode(node, __pa(pernode), pernodesize); 474 } 475 476 return; 477 } 478 479 /** 480 * find_memory - walk the EFI memory map and setup the bootmem allocator 481 * 482 * Called early in boot to setup the bootmem allocator, and to 483 * allocate the per-cpu and per-node structures. 484 */ 485 void __init find_memory(void) 486 { 487 int node; 488 489 reserve_memory(); 490 efi_memmap_walk(filter_memory, register_active_ranges); 491 492 if (num_online_nodes() == 0) { 493 printk(KERN_ERR "node info missing!\n"); 494 node_set_online(0); 495 } 496 497 nodes_or(memory_less_mask, memory_less_mask, node_online_map); 498 min_low_pfn = -1; 499 max_low_pfn = 0; 500 501 /* These actually end up getting called by call_pernode_memory() */ 502 efi_memmap_walk(filter_rsvd_memory, build_node_maps); 503 efi_memmap_walk(filter_rsvd_memory, find_pernode_space); 504 efi_memmap_walk(find_max_min_low_pfn, NULL); 505 506 for_each_online_node(node) 507 if (mem_data[node].min_pfn) 508 node_clear(node, memory_less_mask); 509 510 reserve_pernode_space(); 511 memory_less_nodes(); 512 initialize_pernode_data(); 513 514 max_pfn = max_low_pfn; 515 516 find_initrd(); 517 } 518 519 #ifdef CONFIG_SMP 520 /** 521 * per_cpu_init - setup per-cpu variables 522 * 523 * find_pernode_space() does most of this already, we just need to set 524 * local_per_cpu_offset 525 */ 526 void *per_cpu_init(void) 527 { 528 int cpu; 529 static int first_time = 1; 530 531 if (first_time) { 532 first_time = 0; 533 for_each_possible_early_cpu(cpu) 534 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; 535 } 536 537 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 538 } 539 #endif /* CONFIG_SMP */ 540 541 /** 542 * call_pernode_memory - use SRAT to call callback functions with node info 543 * @start: physical start of range 544 * @len: length of range 545 * @arg: function to call for each range 546 * 547 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find 548 * out to which node a block of memory belongs. Ignore memory that we cannot 549 * identify, and split blocks that run across multiple nodes. 550 * 551 * Take this opportunity to round the start address up and the end address 552 * down to page boundaries. 553 */ 554 void call_pernode_memory(unsigned long start, unsigned long len, void *arg) 555 { 556 unsigned long rs, re, end = start + len; 557 void (*func)(unsigned long, unsigned long, int); 558 int i; 559 560 start = PAGE_ALIGN(start); 561 end &= PAGE_MASK; 562 if (start >= end) 563 return; 564 565 func = arg; 566 567 if (!num_node_memblks) { 568 /* No SRAT table, so assume one node (node 0) */ 569 if (start < end) 570 (*func)(start, end - start, 0); 571 return; 572 } 573 574 for (i = 0; i < num_node_memblks; i++) { 575 rs = max(start, node_memblk[i].start_paddr); 576 re = min(end, node_memblk[i].start_paddr + 577 node_memblk[i].size); 578 579 if (rs < re) 580 (*func)(rs, re - rs, node_memblk[i].nid); 581 582 if (re == end) 583 break; 584 } 585 } 586 587 /** 588 * paging_init - setup page tables 589 * 590 * paging_init() sets up the page tables for each node of the system and frees 591 * the bootmem allocator memory for general use. 592 */ 593 void __init paging_init(void) 594 { 595 unsigned long max_dma; 596 unsigned long pfn_offset = 0; 597 unsigned long max_pfn = 0; 598 int node; 599 unsigned long max_zone_pfns[MAX_NR_ZONES]; 600 601 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; 602 603 sparse_init(); 604 605 #ifdef CONFIG_VIRTUAL_MEM_MAP 606 VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * 607 sizeof(struct page)); 608 vmem_map = (struct page *) VMALLOC_END; 609 efi_memmap_walk(create_mem_map_page_table, NULL); 610 printk("Virtual mem_map starts at 0x%p\n", vmem_map); 611 #endif 612 613 for_each_online_node(node) { 614 pfn_offset = mem_data[node].min_pfn; 615 616 #ifdef CONFIG_VIRTUAL_MEM_MAP 617 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; 618 #endif 619 if (mem_data[node].max_pfn > max_pfn) 620 max_pfn = mem_data[node].max_pfn; 621 } 622 623 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 624 #ifdef CONFIG_ZONE_DMA32 625 max_zone_pfns[ZONE_DMA32] = max_dma; 626 #endif 627 max_zone_pfns[ZONE_NORMAL] = max_pfn; 628 free_area_init(max_zone_pfns); 629 630 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); 631 } 632 633 #ifdef CONFIG_MEMORY_HOTPLUG 634 pg_data_t *arch_alloc_nodedata(int nid) 635 { 636 unsigned long size = compute_pernodesize(nid); 637 638 return kzalloc(size, GFP_KERNEL); 639 } 640 641 void arch_free_nodedata(pg_data_t *pgdat) 642 { 643 kfree(pgdat); 644 } 645 646 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat) 647 { 648 pgdat_list[update_node] = update_pgdat; 649 scatter_node_data(); 650 } 651 #endif 652 653 #ifdef CONFIG_SPARSEMEM_VMEMMAP 654 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, 655 struct vmem_altmap *altmap) 656 { 657 return vmemmap_populate_basepages(start, end, node, NULL); 658 } 659 660 void vmemmap_free(unsigned long start, unsigned long end, 661 struct vmem_altmap *altmap) 662 { 663 } 664 #endif 665