xref: /openbmc/linux/arch/ia64/mm/discontig.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
4  * Copyright (c) 2001 Intel Corp.
5  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
6  * Copyright (c) 2002 NEC Corp.
7  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
8  * Copyright (c) 2004 Silicon Graphics, Inc
9  *	Russ Anderson <rja@sgi.com>
10  *	Jesse Barnes <jbarnes@sgi.com>
11  *	Jack Steiner <steiner@sgi.com>
12  */
13 
14 /*
15  * Platform initialization for Discontig Memory
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22 #include <linux/bootmem.h>
23 #include <linux/memblock.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/nodemask.h>
27 #include <linux/slab.h>
28 #include <asm/pgalloc.h>
29 #include <asm/tlb.h>
30 #include <asm/meminit.h>
31 #include <asm/numa.h>
32 #include <asm/sections.h>
33 
34 /*
35  * Track per-node information needed to setup the boot memory allocator, the
36  * per-node areas, and the real VM.
37  */
38 struct early_node_data {
39 	struct ia64_node_data *node_data;
40 	unsigned long pernode_addr;
41 	unsigned long pernode_size;
42 	unsigned long min_pfn;
43 	unsigned long max_pfn;
44 };
45 
46 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
47 static nodemask_t memory_less_mask __initdata;
48 
49 pg_data_t *pgdat_list[MAX_NUMNODES];
50 
51 /*
52  * To prevent cache aliasing effects, align per-node structures so that they
53  * start at addresses that are strided by node number.
54  */
55 #define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
56 #define NODEDATA_ALIGN(addr, node)						\
57 	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
58 	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
59 
60 /**
61  * build_node_maps - callback to setup mem_data structs for each node
62  * @start: physical start of range
63  * @len: length of range
64  * @node: node where this range resides
65  *
66  * Detect extents of each piece of memory that we wish to
67  * treat as a virtually contiguous block (i.e. each node). Each such block
68  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
69  * if necessary.  Any non-existent pages will simply be part of the virtual
70  * memmap.
71  */
72 static int __init build_node_maps(unsigned long start, unsigned long len,
73 				  int node)
74 {
75 	unsigned long spfn, epfn, end = start + len;
76 
77 	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
78 	spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
79 
80 	if (!mem_data[node].min_pfn) {
81 		mem_data[node].min_pfn = spfn;
82 		mem_data[node].max_pfn = epfn;
83 	} else {
84 		mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
85 		mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
86 	}
87 
88 	return 0;
89 }
90 
91 /**
92  * early_nr_cpus_node - return number of cpus on a given node
93  * @node: node to check
94  *
95  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
96  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
97  * called yet.  Note that node 0 will also count all non-existent cpus.
98  */
99 static int __meminit early_nr_cpus_node(int node)
100 {
101 	int cpu, n = 0;
102 
103 	for_each_possible_early_cpu(cpu)
104 		if (node == node_cpuid[cpu].nid)
105 			n++;
106 
107 	return n;
108 }
109 
110 /**
111  * compute_pernodesize - compute size of pernode data
112  * @node: the node id.
113  */
114 static unsigned long __meminit compute_pernodesize(int node)
115 {
116 	unsigned long pernodesize = 0, cpus;
117 
118 	cpus = early_nr_cpus_node(node);
119 	pernodesize += PERCPU_PAGE_SIZE * cpus;
120 	pernodesize += node * L1_CACHE_BYTES;
121 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
122 	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
123 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
124 	pernodesize = PAGE_ALIGN(pernodesize);
125 	return pernodesize;
126 }
127 
128 /**
129  * per_cpu_node_setup - setup per-cpu areas on each node
130  * @cpu_data: per-cpu area on this node
131  * @node: node to setup
132  *
133  * Copy the static per-cpu data into the region we just set aside and then
134  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
135  * the end of the area.
136  */
137 static void *per_cpu_node_setup(void *cpu_data, int node)
138 {
139 #ifdef CONFIG_SMP
140 	int cpu;
141 
142 	for_each_possible_early_cpu(cpu) {
143 		void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
144 
145 		if (node != node_cpuid[cpu].nid)
146 			continue;
147 
148 		memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
149 		__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
150 			__per_cpu_start;
151 
152 		/*
153 		 * percpu area for cpu0 is moved from the __init area
154 		 * which is setup by head.S and used till this point.
155 		 * Update ar.k3.  This move is ensures that percpu
156 		 * area for cpu0 is on the correct node and its
157 		 * virtual address isn't insanely far from other
158 		 * percpu areas which is important for congruent
159 		 * percpu allocator.
160 		 */
161 		if (cpu == 0)
162 			ia64_set_kr(IA64_KR_PER_CPU_DATA,
163 				    (unsigned long)cpu_data -
164 				    (unsigned long)__per_cpu_start);
165 
166 		cpu_data += PERCPU_PAGE_SIZE;
167 	}
168 #endif
169 	return cpu_data;
170 }
171 
172 #ifdef CONFIG_SMP
173 /**
174  * setup_per_cpu_areas - setup percpu areas
175  *
176  * Arch code has already allocated and initialized percpu areas.  All
177  * this function has to do is to teach the determined layout to the
178  * dynamic percpu allocator, which happens to be more complex than
179  * creating whole new ones using helpers.
180  */
181 void __init setup_per_cpu_areas(void)
182 {
183 	struct pcpu_alloc_info *ai;
184 	struct pcpu_group_info *uninitialized_var(gi);
185 	unsigned int *cpu_map;
186 	void *base;
187 	unsigned long base_offset;
188 	unsigned int cpu;
189 	ssize_t static_size, reserved_size, dyn_size;
190 	int node, prev_node, unit, nr_units, rc;
191 
192 	ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
193 	if (!ai)
194 		panic("failed to allocate pcpu_alloc_info");
195 	cpu_map = ai->groups[0].cpu_map;
196 
197 	/* determine base */
198 	base = (void *)ULONG_MAX;
199 	for_each_possible_cpu(cpu)
200 		base = min(base,
201 			   (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
202 	base_offset = (void *)__per_cpu_start - base;
203 
204 	/* build cpu_map, units are grouped by node */
205 	unit = 0;
206 	for_each_node(node)
207 		for_each_possible_cpu(cpu)
208 			if (node == node_cpuid[cpu].nid)
209 				cpu_map[unit++] = cpu;
210 	nr_units = unit;
211 
212 	/* set basic parameters */
213 	static_size = __per_cpu_end - __per_cpu_start;
214 	reserved_size = PERCPU_MODULE_RESERVE;
215 	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
216 	if (dyn_size < 0)
217 		panic("percpu area overflow static=%zd reserved=%zd\n",
218 		      static_size, reserved_size);
219 
220 	ai->static_size		= static_size;
221 	ai->reserved_size	= reserved_size;
222 	ai->dyn_size		= dyn_size;
223 	ai->unit_size		= PERCPU_PAGE_SIZE;
224 	ai->atom_size		= PAGE_SIZE;
225 	ai->alloc_size		= PERCPU_PAGE_SIZE;
226 
227 	/*
228 	 * CPUs are put into groups according to node.  Walk cpu_map
229 	 * and create new groups at node boundaries.
230 	 */
231 	prev_node = -1;
232 	ai->nr_groups = 0;
233 	for (unit = 0; unit < nr_units; unit++) {
234 		cpu = cpu_map[unit];
235 		node = node_cpuid[cpu].nid;
236 
237 		if (node == prev_node) {
238 			gi->nr_units++;
239 			continue;
240 		}
241 		prev_node = node;
242 
243 		gi = &ai->groups[ai->nr_groups++];
244 		gi->nr_units		= 1;
245 		gi->base_offset		= __per_cpu_offset[cpu] + base_offset;
246 		gi->cpu_map		= &cpu_map[unit];
247 	}
248 
249 	rc = pcpu_setup_first_chunk(ai, base);
250 	if (rc)
251 		panic("failed to setup percpu area (err=%d)", rc);
252 
253 	pcpu_free_alloc_info(ai);
254 }
255 #endif
256 
257 /**
258  * fill_pernode - initialize pernode data.
259  * @node: the node id.
260  * @pernode: physical address of pernode data
261  * @pernodesize: size of the pernode data
262  */
263 static void __init fill_pernode(int node, unsigned long pernode,
264 	unsigned long pernodesize)
265 {
266 	void *cpu_data;
267 	int cpus = early_nr_cpus_node(node);
268 
269 	mem_data[node].pernode_addr = pernode;
270 	mem_data[node].pernode_size = pernodesize;
271 	memset(__va(pernode), 0, pernodesize);
272 
273 	cpu_data = (void *)pernode;
274 	pernode += PERCPU_PAGE_SIZE * cpus;
275 	pernode += node * L1_CACHE_BYTES;
276 
277 	pgdat_list[node] = __va(pernode);
278 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
279 
280 	mem_data[node].node_data = __va(pernode);
281 	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
282 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
283 
284 	cpu_data = per_cpu_node_setup(cpu_data, node);
285 
286 	return;
287 }
288 
289 /**
290  * find_pernode_space - allocate memory for memory map and per-node structures
291  * @start: physical start of range
292  * @len: length of range
293  * @node: node where this range resides
294  *
295  * This routine reserves space for the per-cpu data struct, the list of
296  * pg_data_ts and the per-node data struct.  Each node will have something like
297  * the following in the first chunk of addr. space large enough to hold it.
298  *
299  *    ________________________
300  *   |                        |
301  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
302  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
303  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
304  *   |------------------------|
305  *   |   local pg_data_t *    |
306  *   |------------------------|
307  *   |  local ia64_node_data  |
308  *   |------------------------|
309  *   |          ???           |
310  *   |________________________|
311  *
312  * Once this space has been set aside, the bootmem maps are initialized.  We
313  * could probably move the allocation of the per-cpu and ia64_node_data space
314  * outside of this function and use alloc_bootmem_node(), but doing it here
315  * is straightforward and we get the alignments we want so...
316  */
317 static int __init find_pernode_space(unsigned long start, unsigned long len,
318 				     int node)
319 {
320 	unsigned long spfn, epfn;
321 	unsigned long pernodesize = 0, pernode;
322 
323 	spfn = start >> PAGE_SHIFT;
324 	epfn = (start + len) >> PAGE_SHIFT;
325 
326 	/*
327 	 * Make sure this memory falls within this node's usable memory
328 	 * since we may have thrown some away in build_maps().
329 	 */
330 	if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
331 		return 0;
332 
333 	/* Don't setup this node's local space twice... */
334 	if (mem_data[node].pernode_addr)
335 		return 0;
336 
337 	/*
338 	 * Calculate total size needed, incl. what's necessary
339 	 * for good alignment and alias prevention.
340 	 */
341 	pernodesize = compute_pernodesize(node);
342 	pernode = NODEDATA_ALIGN(start, node);
343 
344 	/* Is this range big enough for what we want to store here? */
345 	if (start + len > (pernode + pernodesize))
346 		fill_pernode(node, pernode, pernodesize);
347 
348 	return 0;
349 }
350 
351 /**
352  * reserve_pernode_space - reserve memory for per-node space
353  *
354  * Reserve the space used by the bootmem maps & per-node space in the boot
355  * allocator so that when we actually create the real mem maps we don't
356  * use their memory.
357  */
358 static void __init reserve_pernode_space(void)
359 {
360 	unsigned long base, size;
361 	int node;
362 
363 	for_each_online_node(node) {
364 		if (node_isset(node, memory_less_mask))
365 			continue;
366 
367 		/* Now the per-node space */
368 		size = mem_data[node].pernode_size;
369 		base = __pa(mem_data[node].pernode_addr);
370 		memblock_reserve(base, size);
371 	}
372 }
373 
374 static void __meminit scatter_node_data(void)
375 {
376 	pg_data_t **dst;
377 	int node;
378 
379 	/*
380 	 * for_each_online_node() can't be used at here.
381 	 * node_online_map is not set for hot-added nodes at this time,
382 	 * because we are halfway through initialization of the new node's
383 	 * structures.  If for_each_online_node() is used, a new node's
384 	 * pg_data_ptrs will be not initialized. Instead of using it,
385 	 * pgdat_list[] is checked.
386 	 */
387 	for_each_node(node) {
388 		if (pgdat_list[node]) {
389 			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
390 			memcpy(dst, pgdat_list, sizeof(pgdat_list));
391 		}
392 	}
393 }
394 
395 /**
396  * initialize_pernode_data - fixup per-cpu & per-node pointers
397  *
398  * Each node's per-node area has a copy of the global pg_data_t list, so
399  * we copy that to each node here, as well as setting the per-cpu pointer
400  * to the local node data structure.  The active_cpus field of the per-node
401  * structure gets setup by the platform_cpu_init() function later.
402  */
403 static void __init initialize_pernode_data(void)
404 {
405 	int cpu, node;
406 
407 	scatter_node_data();
408 
409 #ifdef CONFIG_SMP
410 	/* Set the node_data pointer for each per-cpu struct */
411 	for_each_possible_early_cpu(cpu) {
412 		node = node_cpuid[cpu].nid;
413 		per_cpu(ia64_cpu_info, cpu).node_data =
414 			mem_data[node].node_data;
415 	}
416 #else
417 	{
418 		struct cpuinfo_ia64 *cpu0_cpu_info;
419 		cpu = 0;
420 		node = node_cpuid[cpu].nid;
421 		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
422 			((char *)&ia64_cpu_info - __per_cpu_start));
423 		cpu0_cpu_info->node_data = mem_data[node].node_data;
424 	}
425 #endif /* CONFIG_SMP */
426 }
427 
428 /**
429  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
430  * 	node but fall back to any other node when __alloc_bootmem_node fails
431  *	for best.
432  * @nid: node id
433  * @pernodesize: size of this node's pernode data
434  */
435 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
436 {
437 	void *ptr = NULL;
438 	u8 best = 0xff;
439 	int bestnode = -1, node, anynode = 0;
440 
441 	for_each_online_node(node) {
442 		if (node_isset(node, memory_less_mask))
443 			continue;
444 		else if (node_distance(nid, node) < best) {
445 			best = node_distance(nid, node);
446 			bestnode = node;
447 		}
448 		anynode = node;
449 	}
450 
451 	if (bestnode == -1)
452 		bestnode = anynode;
453 
454 	ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
455 		PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
456 
457 	return ptr;
458 }
459 
460 /**
461  * memory_less_nodes - allocate and initialize CPU only nodes pernode
462  *	information.
463  */
464 static void __init memory_less_nodes(void)
465 {
466 	unsigned long pernodesize;
467 	void *pernode;
468 	int node;
469 
470 	for_each_node_mask(node, memory_less_mask) {
471 		pernodesize = compute_pernodesize(node);
472 		pernode = memory_less_node_alloc(node, pernodesize);
473 		fill_pernode(node, __pa(pernode), pernodesize);
474 	}
475 
476 	return;
477 }
478 
479 /**
480  * find_memory - walk the EFI memory map and setup the bootmem allocator
481  *
482  * Called early in boot to setup the bootmem allocator, and to
483  * allocate the per-cpu and per-node structures.
484  */
485 void __init find_memory(void)
486 {
487 	int node;
488 
489 	reserve_memory();
490 	efi_memmap_walk(filter_memory, register_active_ranges);
491 
492 	if (num_online_nodes() == 0) {
493 		printk(KERN_ERR "node info missing!\n");
494 		node_set_online(0);
495 	}
496 
497 	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
498 	min_low_pfn = -1;
499 	max_low_pfn = 0;
500 
501 	/* These actually end up getting called by call_pernode_memory() */
502 	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
503 	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
504 	efi_memmap_walk(find_max_min_low_pfn, NULL);
505 
506 	for_each_online_node(node)
507 		if (mem_data[node].min_pfn)
508 			node_clear(node, memory_less_mask);
509 
510 	reserve_pernode_space();
511 	memory_less_nodes();
512 	initialize_pernode_data();
513 
514 	max_pfn = max_low_pfn;
515 
516 	find_initrd();
517 }
518 
519 #ifdef CONFIG_SMP
520 /**
521  * per_cpu_init - setup per-cpu variables
522  *
523  * find_pernode_space() does most of this already, we just need to set
524  * local_per_cpu_offset
525  */
526 void *per_cpu_init(void)
527 {
528 	int cpu;
529 	static int first_time = 1;
530 
531 	if (first_time) {
532 		first_time = 0;
533 		for_each_possible_early_cpu(cpu)
534 			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
535 	}
536 
537 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
538 }
539 #endif /* CONFIG_SMP */
540 
541 /**
542  * call_pernode_memory - use SRAT to call callback functions with node info
543  * @start: physical start of range
544  * @len: length of range
545  * @arg: function to call for each range
546  *
547  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
548  * out to which node a block of memory belongs.  Ignore memory that we cannot
549  * identify, and split blocks that run across multiple nodes.
550  *
551  * Take this opportunity to round the start address up and the end address
552  * down to page boundaries.
553  */
554 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
555 {
556 	unsigned long rs, re, end = start + len;
557 	void (*func)(unsigned long, unsigned long, int);
558 	int i;
559 
560 	start = PAGE_ALIGN(start);
561 	end &= PAGE_MASK;
562 	if (start >= end)
563 		return;
564 
565 	func = arg;
566 
567 	if (!num_node_memblks) {
568 		/* No SRAT table, so assume one node (node 0) */
569 		if (start < end)
570 			(*func)(start, end - start, 0);
571 		return;
572 	}
573 
574 	for (i = 0; i < num_node_memblks; i++) {
575 		rs = max(start, node_memblk[i].start_paddr);
576 		re = min(end, node_memblk[i].start_paddr +
577 			 node_memblk[i].size);
578 
579 		if (rs < re)
580 			(*func)(rs, re - rs, node_memblk[i].nid);
581 
582 		if (re == end)
583 			break;
584 	}
585 }
586 
587 /**
588  * paging_init - setup page tables
589  *
590  * paging_init() sets up the page tables for each node of the system and frees
591  * the bootmem allocator memory for general use.
592  */
593 void __init paging_init(void)
594 {
595 	unsigned long max_dma;
596 	unsigned long pfn_offset = 0;
597 	unsigned long max_pfn = 0;
598 	int node;
599 	unsigned long max_zone_pfns[MAX_NR_ZONES];
600 
601 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
602 
603 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
604 	sparse_init();
605 
606 #ifdef CONFIG_VIRTUAL_MEM_MAP
607 	VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
608 		sizeof(struct page));
609 	vmem_map = (struct page *) VMALLOC_END;
610 	efi_memmap_walk(create_mem_map_page_table, NULL);
611 	printk("Virtual mem_map starts at 0x%p\n", vmem_map);
612 #endif
613 
614 	for_each_online_node(node) {
615 		pfn_offset = mem_data[node].min_pfn;
616 
617 #ifdef CONFIG_VIRTUAL_MEM_MAP
618 		NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
619 #endif
620 		if (mem_data[node].max_pfn > max_pfn)
621 			max_pfn = mem_data[node].max_pfn;
622 	}
623 
624 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
625 #ifdef CONFIG_ZONE_DMA32
626 	max_zone_pfns[ZONE_DMA32] = max_dma;
627 #endif
628 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
629 	free_area_init_nodes(max_zone_pfns);
630 
631 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
632 }
633 
634 #ifdef CONFIG_MEMORY_HOTPLUG
635 pg_data_t *arch_alloc_nodedata(int nid)
636 {
637 	unsigned long size = compute_pernodesize(nid);
638 
639 	return kzalloc(size, GFP_KERNEL);
640 }
641 
642 void arch_free_nodedata(pg_data_t *pgdat)
643 {
644 	kfree(pgdat);
645 }
646 
647 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
648 {
649 	pgdat_list[update_node] = update_pgdat;
650 	scatter_node_data();
651 }
652 #endif
653 
654 #ifdef CONFIG_SPARSEMEM_VMEMMAP
655 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
656 		struct vmem_altmap *altmap)
657 {
658 	return vmemmap_populate_basepages(start, end, node);
659 }
660 
661 void vmemmap_free(unsigned long start, unsigned long end,
662 		struct vmem_altmap *altmap)
663 {
664 }
665 #endif
666