xref: /openbmc/linux/arch/ia64/mm/discontig.c (revision 1da177e4)
1 /*
2  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
3  * Copyright (c) 2001 Intel Corp.
4  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5  * Copyright (c) 2002 NEC Corp.
6  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7  * Copyright (c) 2004 Silicon Graphics, Inc
8  *	Russ Anderson <rja@sgi.com>
9  *	Jesse Barnes <jbarnes@sgi.com>
10  *	Jack Steiner <steiner@sgi.com>
11  */
12 
13 /*
14  * Platform initialization for Discontig Memory
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bootmem.h>
21 #include <linux/acpi.h>
22 #include <linux/efi.h>
23 #include <linux/nodemask.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlb.h>
26 #include <asm/meminit.h>
27 #include <asm/numa.h>
28 #include <asm/sections.h>
29 
30 /*
31  * Track per-node information needed to setup the boot memory allocator, the
32  * per-node areas, and the real VM.
33  */
34 struct early_node_data {
35 	struct ia64_node_data *node_data;
36 	pg_data_t *pgdat;
37 	unsigned long pernode_addr;
38 	unsigned long pernode_size;
39 	struct bootmem_data bootmem_data;
40 	unsigned long num_physpages;
41 	unsigned long num_dma_physpages;
42 	unsigned long min_pfn;
43 	unsigned long max_pfn;
44 };
45 
46 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
47 
48 /**
49  * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node
50  *
51  * This function will move nodes with only CPUs (no memory)
52  * to a node with memory which is at the minimum numa_slit distance.
53  * Any reassigments will result in the compression of the nodes
54  * and renumbering the nid values where appropriate.
55  * The static declarations below are to avoid large stack size which
56  * makes the code not re-entrant.
57  */
58 static void __init reassign_cpu_only_nodes(void)
59 {
60 	struct node_memblk_s *p;
61 	int i, j, k, nnode, nid, cpu, cpunid, pxm;
62 	u8 cslit, slit;
63 	static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata;
64 	static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata;
65 	static int node_flip[MAX_NUMNODES] __initdata;
66 	static int old_nid_map[NR_CPUS] __initdata;
67 
68 	for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++)
69 		if (!test_bit(p->nid, (void *) nodes_with_mem)) {
70 			set_bit(p->nid, (void *) nodes_with_mem);
71 			nnode++;
72 		}
73 
74 	/*
75 	 * All nids with memory.
76 	 */
77 	if (nnode == num_online_nodes())
78 		return;
79 
80 	/*
81 	 * Change nids and attempt to migrate CPU-only nodes
82 	 * to the best numa_slit (closest neighbor) possible.
83 	 * For reassigned CPU nodes a nid can't be arrived at
84 	 * until after this loop because the target nid's new
85 	 * identity might not have been established yet. So
86 	 * new nid values are fabricated above num_online_nodes() and
87 	 * mapped back later to their true value.
88 	 */
89 	/* MCD - This code is a bit complicated, but may be unnecessary now.
90 	 * We can now handle much more interesting node-numbering.
91 	 * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES
92 	 * and that there be no holes in the numbering 0..numnodes
93 	 * has become simply 0 <= nid <= MAX_NUMNODES.
94 	 */
95 	nid = 0;
96 	for_each_online_node(i)  {
97 		if (test_bit(i, (void *) nodes_with_mem)) {
98 			/*
99 			 * Save original nid value for numa_slit
100 			 * fixup and node_cpuid reassignments.
101 			 */
102 			node_flip[nid] = i;
103 
104 			if (i == nid) {
105 				nid++;
106 				continue;
107 			}
108 
109 			for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++)
110 				if (p->nid == i)
111 					p->nid = nid;
112 
113 			cpunid = nid;
114 			nid++;
115 		} else
116 			cpunid = MAX_NUMNODES;
117 
118 		for (cpu = 0; cpu < NR_CPUS; cpu++)
119 			if (node_cpuid[cpu].nid == i) {
120 				/*
121 				 * For nodes not being reassigned just
122 				 * fix the cpu's nid and reverse pxm map
123 				 */
124 				if (cpunid < MAX_NUMNODES) {
125 					pxm = nid_to_pxm_map[i];
126 					pxm_to_nid_map[pxm] =
127 					          node_cpuid[cpu].nid = cpunid;
128 					continue;
129 				}
130 
131 				/*
132 				 * For nodes being reassigned, find best node by
133 				 * numa_slit information and then make a temporary
134 				 * nid value based on current nid and num_online_nodes().
135 				 */
136 				slit = 0xff;
137 				k = 2*num_online_nodes();
138 				for_each_online_node(j) {
139 					if (i == j)
140 						continue;
141 					else if (test_bit(j, (void *) nodes_with_mem)) {
142 						cslit = numa_slit[i * num_online_nodes() + j];
143 						if (cslit < slit) {
144 							k = num_online_nodes() + j;
145 							slit = cslit;
146 						}
147 					}
148 				}
149 
150 				/* save old nid map so we can update the pxm */
151 				old_nid_map[cpu] = node_cpuid[cpu].nid;
152 				node_cpuid[cpu].nid = k;
153 			}
154 	}
155 
156 	/*
157 	 * Fixup temporary nid values for CPU-only nodes.
158 	 */
159 	for (cpu = 0; cpu < NR_CPUS; cpu++)
160 		if (node_cpuid[cpu].nid == (2*num_online_nodes())) {
161 			pxm = nid_to_pxm_map[old_nid_map[cpu]];
162 			pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1;
163 		} else {
164 			for (i = 0; i < nnode; i++) {
165 				if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes()))
166 					continue;
167 
168 				pxm = nid_to_pxm_map[old_nid_map[cpu]];
169 				pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i;
170 				break;
171 			}
172 		}
173 
174 	/*
175 	 * Fix numa_slit by compressing from larger
176 	 * nid array to reduced nid array.
177 	 */
178 	for (i = 0; i < nnode; i++)
179 		for (j = 0; j < nnode; j++)
180 			numa_slit_fix[i * nnode + j] =
181 				numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]];
182 
183 	memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit));
184 
185 	nodes_clear(node_online_map);
186 	for (i = 0; i < nnode; i++)
187 		node_set_online(i);
188 
189 	return;
190 }
191 
192 /*
193  * To prevent cache aliasing effects, align per-node structures so that they
194  * start at addresses that are strided by node number.
195  */
196 #define NODEDATA_ALIGN(addr, node)						\
197 	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE)
198 
199 /**
200  * build_node_maps - callback to setup bootmem structs for each node
201  * @start: physical start of range
202  * @len: length of range
203  * @node: node where this range resides
204  *
205  * We allocate a struct bootmem_data for each piece of memory that we wish to
206  * treat as a virtually contiguous block (i.e. each node). Each such block
207  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
208  * if necessary.  Any non-existent pages will simply be part of the virtual
209  * memmap.  We also update min_low_pfn and max_low_pfn here as we receive
210  * memory ranges from the caller.
211  */
212 static int __init build_node_maps(unsigned long start, unsigned long len,
213 				  int node)
214 {
215 	unsigned long cstart, epfn, end = start + len;
216 	struct bootmem_data *bdp = &mem_data[node].bootmem_data;
217 
218 	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
219 	cstart = GRANULEROUNDDOWN(start);
220 
221 	if (!bdp->node_low_pfn) {
222 		bdp->node_boot_start = cstart;
223 		bdp->node_low_pfn = epfn;
224 	} else {
225 		bdp->node_boot_start = min(cstart, bdp->node_boot_start);
226 		bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
227 	}
228 
229 	min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT);
230 	max_low_pfn = max(max_low_pfn, bdp->node_low_pfn);
231 
232 	return 0;
233 }
234 
235 /**
236  * early_nr_phys_cpus_node - return number of physical cpus on a given node
237  * @node: node to check
238  *
239  * Count the number of physical cpus on @node.  These are cpus that actually
240  * exist.  We can't use nr_cpus_node() yet because
241  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
242  * called yet.
243  */
244 static int early_nr_phys_cpus_node(int node)
245 {
246 	int cpu, n = 0;
247 
248 	for (cpu = 0; cpu < NR_CPUS; cpu++)
249 		if (node == node_cpuid[cpu].nid)
250 			if ((cpu == 0) || node_cpuid[cpu].phys_id)
251 				n++;
252 
253 	return n;
254 }
255 
256 
257 /**
258  * early_nr_cpus_node - return number of cpus on a given node
259  * @node: node to check
260  *
261  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
262  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
263  * called yet.  Note that node 0 will also count all non-existent cpus.
264  */
265 static int early_nr_cpus_node(int node)
266 {
267 	int cpu, n = 0;
268 
269 	for (cpu = 0; cpu < NR_CPUS; cpu++)
270 		if (node == node_cpuid[cpu].nid)
271 			n++;
272 
273 	return n;
274 }
275 
276 /**
277  * find_pernode_space - allocate memory for memory map and per-node structures
278  * @start: physical start of range
279  * @len: length of range
280  * @node: node where this range resides
281  *
282  * This routine reserves space for the per-cpu data struct, the list of
283  * pg_data_ts and the per-node data struct.  Each node will have something like
284  * the following in the first chunk of addr. space large enough to hold it.
285  *
286  *    ________________________
287  *   |                        |
288  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
289  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
290  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
291  *   |------------------------|
292  *   |   local pg_data_t *    |
293  *   |------------------------|
294  *   |  local ia64_node_data  |
295  *   |------------------------|
296  *   |          ???           |
297  *   |________________________|
298  *
299  * Once this space has been set aside, the bootmem maps are initialized.  We
300  * could probably move the allocation of the per-cpu and ia64_node_data space
301  * outside of this function and use alloc_bootmem_node(), but doing it here
302  * is straightforward and we get the alignments we want so...
303  */
304 static int __init find_pernode_space(unsigned long start, unsigned long len,
305 				     int node)
306 {
307 	unsigned long epfn, cpu, cpus, phys_cpus;
308 	unsigned long pernodesize = 0, pernode, pages, mapsize;
309 	void *cpu_data;
310 	struct bootmem_data *bdp = &mem_data[node].bootmem_data;
311 
312 	epfn = (start + len) >> PAGE_SHIFT;
313 
314 	pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
315 	mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
316 
317 	/*
318 	 * Make sure this memory falls within this node's usable memory
319 	 * since we may have thrown some away in build_maps().
320 	 */
321 	if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
322 		return 0;
323 
324 	/* Don't setup this node's local space twice... */
325 	if (mem_data[node].pernode_addr)
326 		return 0;
327 
328 	/*
329 	 * Calculate total size needed, incl. what's necessary
330 	 * for good alignment and alias prevention.
331 	 */
332 	cpus = early_nr_cpus_node(node);
333 	phys_cpus = early_nr_phys_cpus_node(node);
334 	pernodesize += PERCPU_PAGE_SIZE * cpus;
335 	pernodesize += node * L1_CACHE_BYTES;
336 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
337 	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
338 	pernodesize = PAGE_ALIGN(pernodesize);
339 	pernode = NODEDATA_ALIGN(start, node);
340 
341 	/* Is this range big enough for what we want to store here? */
342 	if (start + len > (pernode + pernodesize + mapsize)) {
343 		mem_data[node].pernode_addr = pernode;
344 		mem_data[node].pernode_size = pernodesize;
345 		memset(__va(pernode), 0, pernodesize);
346 
347 		cpu_data = (void *)pernode;
348 		pernode += PERCPU_PAGE_SIZE * cpus;
349 		pernode += node * L1_CACHE_BYTES;
350 
351 		mem_data[node].pgdat = __va(pernode);
352 		pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
353 
354 		mem_data[node].node_data = __va(pernode);
355 		pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
356 
357 		mem_data[node].pgdat->bdata = bdp;
358 		pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
359 
360 		/*
361 		 * Copy the static per-cpu data into the region we
362 		 * just set aside and then setup __per_cpu_offset
363 		 * for each CPU on this node.
364 		 */
365 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
366 			if (node == node_cpuid[cpu].nid) {
367 				memcpy(__va(cpu_data), __phys_per_cpu_start,
368 				       __per_cpu_end - __per_cpu_start);
369 				__per_cpu_offset[cpu] = (char*)__va(cpu_data) -
370 					__per_cpu_start;
371 				cpu_data += PERCPU_PAGE_SIZE;
372 			}
373 		}
374 	}
375 
376 	return 0;
377 }
378 
379 /**
380  * free_node_bootmem - free bootmem allocator memory for use
381  * @start: physical start of range
382  * @len: length of range
383  * @node: node where this range resides
384  *
385  * Simply calls the bootmem allocator to free the specified ranged from
386  * the given pg_data_t's bdata struct.  After this function has been called
387  * for all the entries in the EFI memory map, the bootmem allocator will
388  * be ready to service allocation requests.
389  */
390 static int __init free_node_bootmem(unsigned long start, unsigned long len,
391 				    int node)
392 {
393 	free_bootmem_node(mem_data[node].pgdat, start, len);
394 
395 	return 0;
396 }
397 
398 /**
399  * reserve_pernode_space - reserve memory for per-node space
400  *
401  * Reserve the space used by the bootmem maps & per-node space in the boot
402  * allocator so that when we actually create the real mem maps we don't
403  * use their memory.
404  */
405 static void __init reserve_pernode_space(void)
406 {
407 	unsigned long base, size, pages;
408 	struct bootmem_data *bdp;
409 	int node;
410 
411 	for_each_online_node(node) {
412 		pg_data_t *pdp = mem_data[node].pgdat;
413 
414 		bdp = pdp->bdata;
415 
416 		/* First the bootmem_map itself */
417 		pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
418 		size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
419 		base = __pa(bdp->node_bootmem_map);
420 		reserve_bootmem_node(pdp, base, size);
421 
422 		/* Now the per-node space */
423 		size = mem_data[node].pernode_size;
424 		base = __pa(mem_data[node].pernode_addr);
425 		reserve_bootmem_node(pdp, base, size);
426 	}
427 }
428 
429 /**
430  * initialize_pernode_data - fixup per-cpu & per-node pointers
431  *
432  * Each node's per-node area has a copy of the global pg_data_t list, so
433  * we copy that to each node here, as well as setting the per-cpu pointer
434  * to the local node data structure.  The active_cpus field of the per-node
435  * structure gets setup by the platform_cpu_init() function later.
436  */
437 static void __init initialize_pernode_data(void)
438 {
439 	int cpu, node;
440 	pg_data_t *pgdat_list[MAX_NUMNODES];
441 
442 	for_each_online_node(node)
443 		pgdat_list[node] = mem_data[node].pgdat;
444 
445 	/* Copy the pg_data_t list to each node and init the node field */
446 	for_each_online_node(node) {
447 		memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list,
448 		       sizeof(pgdat_list));
449 	}
450 
451 	/* Set the node_data pointer for each per-cpu struct */
452 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
453 		node = node_cpuid[cpu].nid;
454 		per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
455 	}
456 }
457 
458 /**
459  * find_memory - walk the EFI memory map and setup the bootmem allocator
460  *
461  * Called early in boot to setup the bootmem allocator, and to
462  * allocate the per-cpu and per-node structures.
463  */
464 void __init find_memory(void)
465 {
466 	int node;
467 
468 	reserve_memory();
469 
470 	if (num_online_nodes() == 0) {
471 		printk(KERN_ERR "node info missing!\n");
472 		node_set_online(0);
473 	}
474 
475 	min_low_pfn = -1;
476 	max_low_pfn = 0;
477 
478 	if (num_online_nodes() > 1)
479 		reassign_cpu_only_nodes();
480 
481 	/* These actually end up getting called by call_pernode_memory() */
482 	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
483 	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
484 
485 	/*
486 	 * Initialize the boot memory maps in reverse order since that's
487 	 * what the bootmem allocator expects
488 	 */
489 	for (node = MAX_NUMNODES - 1; node >= 0; node--) {
490 		unsigned long pernode, pernodesize, map;
491 		struct bootmem_data *bdp;
492 
493 		if (!node_online(node))
494 			continue;
495 
496 		bdp = &mem_data[node].bootmem_data;
497 		pernode = mem_data[node].pernode_addr;
498 		pernodesize = mem_data[node].pernode_size;
499 		map = pernode + pernodesize;
500 
501 		/* Sanity check... */
502 		if (!pernode)
503 			panic("pernode space for node %d "
504 			      "could not be allocated!", node);
505 
506 		init_bootmem_node(mem_data[node].pgdat,
507 				  map>>PAGE_SHIFT,
508 				  bdp->node_boot_start>>PAGE_SHIFT,
509 				  bdp->node_low_pfn);
510 	}
511 
512 	efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
513 
514 	reserve_pernode_space();
515 	initialize_pernode_data();
516 
517 	max_pfn = max_low_pfn;
518 
519 	find_initrd();
520 }
521 
522 /**
523  * per_cpu_init - setup per-cpu variables
524  *
525  * find_pernode_space() does most of this already, we just need to set
526  * local_per_cpu_offset
527  */
528 void *per_cpu_init(void)
529 {
530 	int cpu;
531 
532 	if (smp_processor_id() == 0) {
533 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
534 			per_cpu(local_per_cpu_offset, cpu) =
535 				__per_cpu_offset[cpu];
536 		}
537 	}
538 
539 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
540 }
541 
542 /**
543  * show_mem - give short summary of memory stats
544  *
545  * Shows a simple page count of reserved and used pages in the system.
546  * For discontig machines, it does this on a per-pgdat basis.
547  */
548 void show_mem(void)
549 {
550 	int i, total_reserved = 0;
551 	int total_shared = 0, total_cached = 0;
552 	unsigned long total_present = 0;
553 	pg_data_t *pgdat;
554 
555 	printk("Mem-info:\n");
556 	show_free_areas();
557 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
558 	for_each_pgdat(pgdat) {
559 		unsigned long present = pgdat->node_present_pages;
560 		int shared = 0, cached = 0, reserved = 0;
561 		printk("Node ID: %d\n", pgdat->node_id);
562 		for(i = 0; i < pgdat->node_spanned_pages; i++) {
563 			if (!ia64_pfn_valid(pgdat->node_start_pfn+i))
564 				continue;
565 			if (PageReserved(pgdat->node_mem_map+i))
566 				reserved++;
567 			else if (PageSwapCache(pgdat->node_mem_map+i))
568 				cached++;
569 			else if (page_count(pgdat->node_mem_map+i))
570 				shared += page_count(pgdat->node_mem_map+i)-1;
571 		}
572 		total_present += present;
573 		total_reserved += reserved;
574 		total_cached += cached;
575 		total_shared += shared;
576 		printk("\t%ld pages of RAM\n", present);
577 		printk("\t%d reserved pages\n", reserved);
578 		printk("\t%d pages shared\n", shared);
579 		printk("\t%d pages swap cached\n", cached);
580 	}
581 	printk("%ld pages of RAM\n", total_present);
582 	printk("%d reserved pages\n", total_reserved);
583 	printk("%d pages shared\n", total_shared);
584 	printk("%d pages swap cached\n", total_cached);
585 	printk("Total of %ld pages in page table cache\n", pgtable_cache_size);
586 	printk("%d free buffer pages\n", nr_free_buffer_pages());
587 }
588 
589 /**
590  * call_pernode_memory - use SRAT to call callback functions with node info
591  * @start: physical start of range
592  * @len: length of range
593  * @arg: function to call for each range
594  *
595  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
596  * out to which node a block of memory belongs.  Ignore memory that we cannot
597  * identify, and split blocks that run across multiple nodes.
598  *
599  * Take this opportunity to round the start address up and the end address
600  * down to page boundaries.
601  */
602 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
603 {
604 	unsigned long rs, re, end = start + len;
605 	void (*func)(unsigned long, unsigned long, int);
606 	int i;
607 
608 	start = PAGE_ALIGN(start);
609 	end &= PAGE_MASK;
610 	if (start >= end)
611 		return;
612 
613 	func = arg;
614 
615 	if (!num_node_memblks) {
616 		/* No SRAT table, so assume one node (node 0) */
617 		if (start < end)
618 			(*func)(start, end - start, 0);
619 		return;
620 	}
621 
622 	for (i = 0; i < num_node_memblks; i++) {
623 		rs = max(start, node_memblk[i].start_paddr);
624 		re = min(end, node_memblk[i].start_paddr +
625 			 node_memblk[i].size);
626 
627 		if (rs < re)
628 			(*func)(rs, re - rs, node_memblk[i].nid);
629 
630 		if (re == end)
631 			break;
632 	}
633 }
634 
635 /**
636  * count_node_pages - callback to build per-node memory info structures
637  * @start: physical start of range
638  * @len: length of range
639  * @node: node where this range resides
640  *
641  * Each node has it's own number of physical pages, DMAable pages, start, and
642  * end page frame number.  This routine will be called by call_pernode_memory()
643  * for each piece of usable memory and will setup these values for each node.
644  * Very similar to build_maps().
645  */
646 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
647 {
648 	unsigned long end = start + len;
649 
650 	mem_data[node].num_physpages += len >> PAGE_SHIFT;
651 	if (start <= __pa(MAX_DMA_ADDRESS))
652 		mem_data[node].num_dma_physpages +=
653 			(min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
654 	start = GRANULEROUNDDOWN(start);
655 	start = ORDERROUNDDOWN(start);
656 	end = GRANULEROUNDUP(end);
657 	mem_data[node].max_pfn = max(mem_data[node].max_pfn,
658 				     end >> PAGE_SHIFT);
659 	mem_data[node].min_pfn = min(mem_data[node].min_pfn,
660 				     start >> PAGE_SHIFT);
661 
662 	return 0;
663 }
664 
665 /**
666  * paging_init - setup page tables
667  *
668  * paging_init() sets up the page tables for each node of the system and frees
669  * the bootmem allocator memory for general use.
670  */
671 void __init paging_init(void)
672 {
673 	unsigned long max_dma;
674 	unsigned long zones_size[MAX_NR_ZONES];
675 	unsigned long zholes_size[MAX_NR_ZONES];
676 	unsigned long pfn_offset = 0;
677 	int node;
678 
679 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
680 
681 	/* so min() will work in count_node_pages */
682 	for_each_online_node(node)
683 		mem_data[node].min_pfn = ~0UL;
684 
685 	efi_memmap_walk(filter_rsvd_memory, count_node_pages);
686 
687 	for_each_online_node(node) {
688 		memset(zones_size, 0, sizeof(zones_size));
689 		memset(zholes_size, 0, sizeof(zholes_size));
690 
691 		num_physpages += mem_data[node].num_physpages;
692 
693 		if (mem_data[node].min_pfn >= max_dma) {
694 			/* All of this node's memory is above ZONE_DMA */
695 			zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
696 				mem_data[node].min_pfn;
697 			zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn -
698 				mem_data[node].min_pfn -
699 				mem_data[node].num_physpages;
700 		} else if (mem_data[node].max_pfn < max_dma) {
701 			/* All of this node's memory is in ZONE_DMA */
702 			zones_size[ZONE_DMA] = mem_data[node].max_pfn -
703 				mem_data[node].min_pfn;
704 			zholes_size[ZONE_DMA] = mem_data[node].max_pfn -
705 				mem_data[node].min_pfn -
706 				mem_data[node].num_dma_physpages;
707 		} else {
708 			/* This node has memory in both zones */
709 			zones_size[ZONE_DMA] = max_dma -
710 				mem_data[node].min_pfn;
711 			zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
712 				mem_data[node].num_dma_physpages;
713 			zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
714 				max_dma;
715 			zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] -
716 				(mem_data[node].num_physpages -
717 				 mem_data[node].num_dma_physpages);
718 		}
719 
720 		if (node == 0) {
721 			vmalloc_end -=
722 				PAGE_ALIGN(max_low_pfn * sizeof(struct page));
723 			vmem_map = (struct page *) vmalloc_end;
724 
725 			efi_memmap_walk(create_mem_map_page_table, NULL);
726 			printk("Virtual mem_map starts at 0x%p\n", vmem_map);
727 		}
728 
729 		pfn_offset = mem_data[node].min_pfn;
730 
731 		NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
732 		free_area_init_node(node, NODE_DATA(node), zones_size,
733 				    pfn_offset, zholes_size);
734 	}
735 
736 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
737 }
738