1 /* 2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. 3 * Copyright (c) 2001 Intel Corp. 4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> 5 * Copyright (c) 2002 NEC Corp. 6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> 7 * Copyright (c) 2004 Silicon Graphics, Inc 8 * Russ Anderson <rja@sgi.com> 9 * Jesse Barnes <jbarnes@sgi.com> 10 * Jack Steiner <steiner@sgi.com> 11 */ 12 13 /* 14 * Platform initialization for Discontig Memory 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bootmem.h> 21 #include <linux/acpi.h> 22 #include <linux/efi.h> 23 #include <linux/nodemask.h> 24 #include <asm/pgalloc.h> 25 #include <asm/tlb.h> 26 #include <asm/meminit.h> 27 #include <asm/numa.h> 28 #include <asm/sections.h> 29 30 /* 31 * Track per-node information needed to setup the boot memory allocator, the 32 * per-node areas, and the real VM. 33 */ 34 struct early_node_data { 35 struct ia64_node_data *node_data; 36 pg_data_t *pgdat; 37 unsigned long pernode_addr; 38 unsigned long pernode_size; 39 struct bootmem_data bootmem_data; 40 unsigned long num_physpages; 41 unsigned long num_dma_physpages; 42 unsigned long min_pfn; 43 unsigned long max_pfn; 44 }; 45 46 static struct early_node_data mem_data[MAX_NUMNODES] __initdata; 47 48 /** 49 * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node 50 * 51 * This function will move nodes with only CPUs (no memory) 52 * to a node with memory which is at the minimum numa_slit distance. 53 * Any reassigments will result in the compression of the nodes 54 * and renumbering the nid values where appropriate. 55 * The static declarations below are to avoid large stack size which 56 * makes the code not re-entrant. 57 */ 58 static void __init reassign_cpu_only_nodes(void) 59 { 60 struct node_memblk_s *p; 61 int i, j, k, nnode, nid, cpu, cpunid, pxm; 62 u8 cslit, slit; 63 static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata; 64 static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata; 65 static int node_flip[MAX_NUMNODES] __initdata; 66 static int old_nid_map[NR_CPUS] __initdata; 67 68 for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) 69 if (!test_bit(p->nid, (void *) nodes_with_mem)) { 70 set_bit(p->nid, (void *) nodes_with_mem); 71 nnode++; 72 } 73 74 /* 75 * All nids with memory. 76 */ 77 if (nnode == num_online_nodes()) 78 return; 79 80 /* 81 * Change nids and attempt to migrate CPU-only nodes 82 * to the best numa_slit (closest neighbor) possible. 83 * For reassigned CPU nodes a nid can't be arrived at 84 * until after this loop because the target nid's new 85 * identity might not have been established yet. So 86 * new nid values are fabricated above num_online_nodes() and 87 * mapped back later to their true value. 88 */ 89 /* MCD - This code is a bit complicated, but may be unnecessary now. 90 * We can now handle much more interesting node-numbering. 91 * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES 92 * and that there be no holes in the numbering 0..numnodes 93 * has become simply 0 <= nid <= MAX_NUMNODES. 94 */ 95 nid = 0; 96 for_each_online_node(i) { 97 if (test_bit(i, (void *) nodes_with_mem)) { 98 /* 99 * Save original nid value for numa_slit 100 * fixup and node_cpuid reassignments. 101 */ 102 node_flip[nid] = i; 103 104 if (i == nid) { 105 nid++; 106 continue; 107 } 108 109 for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) 110 if (p->nid == i) 111 p->nid = nid; 112 113 cpunid = nid; 114 nid++; 115 } else 116 cpunid = MAX_NUMNODES; 117 118 for (cpu = 0; cpu < NR_CPUS; cpu++) 119 if (node_cpuid[cpu].nid == i) { 120 /* 121 * For nodes not being reassigned just 122 * fix the cpu's nid and reverse pxm map 123 */ 124 if (cpunid < MAX_NUMNODES) { 125 pxm = nid_to_pxm_map[i]; 126 pxm_to_nid_map[pxm] = 127 node_cpuid[cpu].nid = cpunid; 128 continue; 129 } 130 131 /* 132 * For nodes being reassigned, find best node by 133 * numa_slit information and then make a temporary 134 * nid value based on current nid and num_online_nodes(). 135 */ 136 slit = 0xff; 137 k = 2*num_online_nodes(); 138 for_each_online_node(j) { 139 if (i == j) 140 continue; 141 else if (test_bit(j, (void *) nodes_with_mem)) { 142 cslit = numa_slit[i * num_online_nodes() + j]; 143 if (cslit < slit) { 144 k = num_online_nodes() + j; 145 slit = cslit; 146 } 147 } 148 } 149 150 /* save old nid map so we can update the pxm */ 151 old_nid_map[cpu] = node_cpuid[cpu].nid; 152 node_cpuid[cpu].nid = k; 153 } 154 } 155 156 /* 157 * Fixup temporary nid values for CPU-only nodes. 158 */ 159 for (cpu = 0; cpu < NR_CPUS; cpu++) 160 if (node_cpuid[cpu].nid == (2*num_online_nodes())) { 161 pxm = nid_to_pxm_map[old_nid_map[cpu]]; 162 pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1; 163 } else { 164 for (i = 0; i < nnode; i++) { 165 if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes())) 166 continue; 167 168 pxm = nid_to_pxm_map[old_nid_map[cpu]]; 169 pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i; 170 break; 171 } 172 } 173 174 /* 175 * Fix numa_slit by compressing from larger 176 * nid array to reduced nid array. 177 */ 178 for (i = 0; i < nnode; i++) 179 for (j = 0; j < nnode; j++) 180 numa_slit_fix[i * nnode + j] = 181 numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]]; 182 183 memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit)); 184 185 nodes_clear(node_online_map); 186 for (i = 0; i < nnode; i++) 187 node_set_online(i); 188 189 return; 190 } 191 192 /* 193 * To prevent cache aliasing effects, align per-node structures so that they 194 * start at addresses that are strided by node number. 195 */ 196 #define NODEDATA_ALIGN(addr, node) \ 197 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE) 198 199 /** 200 * build_node_maps - callback to setup bootmem structs for each node 201 * @start: physical start of range 202 * @len: length of range 203 * @node: node where this range resides 204 * 205 * We allocate a struct bootmem_data for each piece of memory that we wish to 206 * treat as a virtually contiguous block (i.e. each node). Each such block 207 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down 208 * if necessary. Any non-existent pages will simply be part of the virtual 209 * memmap. We also update min_low_pfn and max_low_pfn here as we receive 210 * memory ranges from the caller. 211 */ 212 static int __init build_node_maps(unsigned long start, unsigned long len, 213 int node) 214 { 215 unsigned long cstart, epfn, end = start + len; 216 struct bootmem_data *bdp = &mem_data[node].bootmem_data; 217 218 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; 219 cstart = GRANULEROUNDDOWN(start); 220 221 if (!bdp->node_low_pfn) { 222 bdp->node_boot_start = cstart; 223 bdp->node_low_pfn = epfn; 224 } else { 225 bdp->node_boot_start = min(cstart, bdp->node_boot_start); 226 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); 227 } 228 229 min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT); 230 max_low_pfn = max(max_low_pfn, bdp->node_low_pfn); 231 232 return 0; 233 } 234 235 /** 236 * early_nr_phys_cpus_node - return number of physical cpus on a given node 237 * @node: node to check 238 * 239 * Count the number of physical cpus on @node. These are cpus that actually 240 * exist. We can't use nr_cpus_node() yet because 241 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been 242 * called yet. 243 */ 244 static int early_nr_phys_cpus_node(int node) 245 { 246 int cpu, n = 0; 247 248 for (cpu = 0; cpu < NR_CPUS; cpu++) 249 if (node == node_cpuid[cpu].nid) 250 if ((cpu == 0) || node_cpuid[cpu].phys_id) 251 n++; 252 253 return n; 254 } 255 256 257 /** 258 * early_nr_cpus_node - return number of cpus on a given node 259 * @node: node to check 260 * 261 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because 262 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been 263 * called yet. Note that node 0 will also count all non-existent cpus. 264 */ 265 static int early_nr_cpus_node(int node) 266 { 267 int cpu, n = 0; 268 269 for (cpu = 0; cpu < NR_CPUS; cpu++) 270 if (node == node_cpuid[cpu].nid) 271 n++; 272 273 return n; 274 } 275 276 /** 277 * find_pernode_space - allocate memory for memory map and per-node structures 278 * @start: physical start of range 279 * @len: length of range 280 * @node: node where this range resides 281 * 282 * This routine reserves space for the per-cpu data struct, the list of 283 * pg_data_ts and the per-node data struct. Each node will have something like 284 * the following in the first chunk of addr. space large enough to hold it. 285 * 286 * ________________________ 287 * | | 288 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first 289 * | PERCPU_PAGE_SIZE * | start and length big enough 290 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. 291 * |------------------------| 292 * | local pg_data_t * | 293 * |------------------------| 294 * | local ia64_node_data | 295 * |------------------------| 296 * | ??? | 297 * |________________________| 298 * 299 * Once this space has been set aside, the bootmem maps are initialized. We 300 * could probably move the allocation of the per-cpu and ia64_node_data space 301 * outside of this function and use alloc_bootmem_node(), but doing it here 302 * is straightforward and we get the alignments we want so... 303 */ 304 static int __init find_pernode_space(unsigned long start, unsigned long len, 305 int node) 306 { 307 unsigned long epfn, cpu, cpus, phys_cpus; 308 unsigned long pernodesize = 0, pernode, pages, mapsize; 309 void *cpu_data; 310 struct bootmem_data *bdp = &mem_data[node].bootmem_data; 311 312 epfn = (start + len) >> PAGE_SHIFT; 313 314 pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT); 315 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; 316 317 /* 318 * Make sure this memory falls within this node's usable memory 319 * since we may have thrown some away in build_maps(). 320 */ 321 if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn) 322 return 0; 323 324 /* Don't setup this node's local space twice... */ 325 if (mem_data[node].pernode_addr) 326 return 0; 327 328 /* 329 * Calculate total size needed, incl. what's necessary 330 * for good alignment and alias prevention. 331 */ 332 cpus = early_nr_cpus_node(node); 333 phys_cpus = early_nr_phys_cpus_node(node); 334 pernodesize += PERCPU_PAGE_SIZE * cpus; 335 pernodesize += node * L1_CACHE_BYTES; 336 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 337 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 338 pernodesize = PAGE_ALIGN(pernodesize); 339 pernode = NODEDATA_ALIGN(start, node); 340 341 /* Is this range big enough for what we want to store here? */ 342 if (start + len > (pernode + pernodesize + mapsize)) { 343 mem_data[node].pernode_addr = pernode; 344 mem_data[node].pernode_size = pernodesize; 345 memset(__va(pernode), 0, pernodesize); 346 347 cpu_data = (void *)pernode; 348 pernode += PERCPU_PAGE_SIZE * cpus; 349 pernode += node * L1_CACHE_BYTES; 350 351 mem_data[node].pgdat = __va(pernode); 352 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 353 354 mem_data[node].node_data = __va(pernode); 355 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 356 357 mem_data[node].pgdat->bdata = bdp; 358 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 359 360 /* 361 * Copy the static per-cpu data into the region we 362 * just set aside and then setup __per_cpu_offset 363 * for each CPU on this node. 364 */ 365 for (cpu = 0; cpu < NR_CPUS; cpu++) { 366 if (node == node_cpuid[cpu].nid) { 367 memcpy(__va(cpu_data), __phys_per_cpu_start, 368 __per_cpu_end - __per_cpu_start); 369 __per_cpu_offset[cpu] = (char*)__va(cpu_data) - 370 __per_cpu_start; 371 cpu_data += PERCPU_PAGE_SIZE; 372 } 373 } 374 } 375 376 return 0; 377 } 378 379 /** 380 * free_node_bootmem - free bootmem allocator memory for use 381 * @start: physical start of range 382 * @len: length of range 383 * @node: node where this range resides 384 * 385 * Simply calls the bootmem allocator to free the specified ranged from 386 * the given pg_data_t's bdata struct. After this function has been called 387 * for all the entries in the EFI memory map, the bootmem allocator will 388 * be ready to service allocation requests. 389 */ 390 static int __init free_node_bootmem(unsigned long start, unsigned long len, 391 int node) 392 { 393 free_bootmem_node(mem_data[node].pgdat, start, len); 394 395 return 0; 396 } 397 398 /** 399 * reserve_pernode_space - reserve memory for per-node space 400 * 401 * Reserve the space used by the bootmem maps & per-node space in the boot 402 * allocator so that when we actually create the real mem maps we don't 403 * use their memory. 404 */ 405 static void __init reserve_pernode_space(void) 406 { 407 unsigned long base, size, pages; 408 struct bootmem_data *bdp; 409 int node; 410 411 for_each_online_node(node) { 412 pg_data_t *pdp = mem_data[node].pgdat; 413 414 bdp = pdp->bdata; 415 416 /* First the bootmem_map itself */ 417 pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); 418 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; 419 base = __pa(bdp->node_bootmem_map); 420 reserve_bootmem_node(pdp, base, size); 421 422 /* Now the per-node space */ 423 size = mem_data[node].pernode_size; 424 base = __pa(mem_data[node].pernode_addr); 425 reserve_bootmem_node(pdp, base, size); 426 } 427 } 428 429 /** 430 * initialize_pernode_data - fixup per-cpu & per-node pointers 431 * 432 * Each node's per-node area has a copy of the global pg_data_t list, so 433 * we copy that to each node here, as well as setting the per-cpu pointer 434 * to the local node data structure. The active_cpus field of the per-node 435 * structure gets setup by the platform_cpu_init() function later. 436 */ 437 static void __init initialize_pernode_data(void) 438 { 439 int cpu, node; 440 pg_data_t *pgdat_list[MAX_NUMNODES]; 441 442 for_each_online_node(node) 443 pgdat_list[node] = mem_data[node].pgdat; 444 445 /* Copy the pg_data_t list to each node and init the node field */ 446 for_each_online_node(node) { 447 memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list, 448 sizeof(pgdat_list)); 449 } 450 451 /* Set the node_data pointer for each per-cpu struct */ 452 for (cpu = 0; cpu < NR_CPUS; cpu++) { 453 node = node_cpuid[cpu].nid; 454 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; 455 } 456 } 457 458 /** 459 * find_memory - walk the EFI memory map and setup the bootmem allocator 460 * 461 * Called early in boot to setup the bootmem allocator, and to 462 * allocate the per-cpu and per-node structures. 463 */ 464 void __init find_memory(void) 465 { 466 int node; 467 468 reserve_memory(); 469 470 if (num_online_nodes() == 0) { 471 printk(KERN_ERR "node info missing!\n"); 472 node_set_online(0); 473 } 474 475 min_low_pfn = -1; 476 max_low_pfn = 0; 477 478 if (num_online_nodes() > 1) 479 reassign_cpu_only_nodes(); 480 481 /* These actually end up getting called by call_pernode_memory() */ 482 efi_memmap_walk(filter_rsvd_memory, build_node_maps); 483 efi_memmap_walk(filter_rsvd_memory, find_pernode_space); 484 485 /* 486 * Initialize the boot memory maps in reverse order since that's 487 * what the bootmem allocator expects 488 */ 489 for (node = MAX_NUMNODES - 1; node >= 0; node--) { 490 unsigned long pernode, pernodesize, map; 491 struct bootmem_data *bdp; 492 493 if (!node_online(node)) 494 continue; 495 496 bdp = &mem_data[node].bootmem_data; 497 pernode = mem_data[node].pernode_addr; 498 pernodesize = mem_data[node].pernode_size; 499 map = pernode + pernodesize; 500 501 /* Sanity check... */ 502 if (!pernode) 503 panic("pernode space for node %d " 504 "could not be allocated!", node); 505 506 init_bootmem_node(mem_data[node].pgdat, 507 map>>PAGE_SHIFT, 508 bdp->node_boot_start>>PAGE_SHIFT, 509 bdp->node_low_pfn); 510 } 511 512 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); 513 514 reserve_pernode_space(); 515 initialize_pernode_data(); 516 517 max_pfn = max_low_pfn; 518 519 find_initrd(); 520 } 521 522 /** 523 * per_cpu_init - setup per-cpu variables 524 * 525 * find_pernode_space() does most of this already, we just need to set 526 * local_per_cpu_offset 527 */ 528 void *per_cpu_init(void) 529 { 530 int cpu; 531 532 if (smp_processor_id() == 0) { 533 for (cpu = 0; cpu < NR_CPUS; cpu++) { 534 per_cpu(local_per_cpu_offset, cpu) = 535 __per_cpu_offset[cpu]; 536 } 537 } 538 539 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 540 } 541 542 /** 543 * show_mem - give short summary of memory stats 544 * 545 * Shows a simple page count of reserved and used pages in the system. 546 * For discontig machines, it does this on a per-pgdat basis. 547 */ 548 void show_mem(void) 549 { 550 int i, total_reserved = 0; 551 int total_shared = 0, total_cached = 0; 552 unsigned long total_present = 0; 553 pg_data_t *pgdat; 554 555 printk("Mem-info:\n"); 556 show_free_areas(); 557 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); 558 for_each_pgdat(pgdat) { 559 unsigned long present = pgdat->node_present_pages; 560 int shared = 0, cached = 0, reserved = 0; 561 printk("Node ID: %d\n", pgdat->node_id); 562 for(i = 0; i < pgdat->node_spanned_pages; i++) { 563 if (!ia64_pfn_valid(pgdat->node_start_pfn+i)) 564 continue; 565 if (PageReserved(pgdat->node_mem_map+i)) 566 reserved++; 567 else if (PageSwapCache(pgdat->node_mem_map+i)) 568 cached++; 569 else if (page_count(pgdat->node_mem_map+i)) 570 shared += page_count(pgdat->node_mem_map+i)-1; 571 } 572 total_present += present; 573 total_reserved += reserved; 574 total_cached += cached; 575 total_shared += shared; 576 printk("\t%ld pages of RAM\n", present); 577 printk("\t%d reserved pages\n", reserved); 578 printk("\t%d pages shared\n", shared); 579 printk("\t%d pages swap cached\n", cached); 580 } 581 printk("%ld pages of RAM\n", total_present); 582 printk("%d reserved pages\n", total_reserved); 583 printk("%d pages shared\n", total_shared); 584 printk("%d pages swap cached\n", total_cached); 585 printk("Total of %ld pages in page table cache\n", pgtable_cache_size); 586 printk("%d free buffer pages\n", nr_free_buffer_pages()); 587 } 588 589 /** 590 * call_pernode_memory - use SRAT to call callback functions with node info 591 * @start: physical start of range 592 * @len: length of range 593 * @arg: function to call for each range 594 * 595 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find 596 * out to which node a block of memory belongs. Ignore memory that we cannot 597 * identify, and split blocks that run across multiple nodes. 598 * 599 * Take this opportunity to round the start address up and the end address 600 * down to page boundaries. 601 */ 602 void call_pernode_memory(unsigned long start, unsigned long len, void *arg) 603 { 604 unsigned long rs, re, end = start + len; 605 void (*func)(unsigned long, unsigned long, int); 606 int i; 607 608 start = PAGE_ALIGN(start); 609 end &= PAGE_MASK; 610 if (start >= end) 611 return; 612 613 func = arg; 614 615 if (!num_node_memblks) { 616 /* No SRAT table, so assume one node (node 0) */ 617 if (start < end) 618 (*func)(start, end - start, 0); 619 return; 620 } 621 622 for (i = 0; i < num_node_memblks; i++) { 623 rs = max(start, node_memblk[i].start_paddr); 624 re = min(end, node_memblk[i].start_paddr + 625 node_memblk[i].size); 626 627 if (rs < re) 628 (*func)(rs, re - rs, node_memblk[i].nid); 629 630 if (re == end) 631 break; 632 } 633 } 634 635 /** 636 * count_node_pages - callback to build per-node memory info structures 637 * @start: physical start of range 638 * @len: length of range 639 * @node: node where this range resides 640 * 641 * Each node has it's own number of physical pages, DMAable pages, start, and 642 * end page frame number. This routine will be called by call_pernode_memory() 643 * for each piece of usable memory and will setup these values for each node. 644 * Very similar to build_maps(). 645 */ 646 static __init int count_node_pages(unsigned long start, unsigned long len, int node) 647 { 648 unsigned long end = start + len; 649 650 mem_data[node].num_physpages += len >> PAGE_SHIFT; 651 if (start <= __pa(MAX_DMA_ADDRESS)) 652 mem_data[node].num_dma_physpages += 653 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; 654 start = GRANULEROUNDDOWN(start); 655 start = ORDERROUNDDOWN(start); 656 end = GRANULEROUNDUP(end); 657 mem_data[node].max_pfn = max(mem_data[node].max_pfn, 658 end >> PAGE_SHIFT); 659 mem_data[node].min_pfn = min(mem_data[node].min_pfn, 660 start >> PAGE_SHIFT); 661 662 return 0; 663 } 664 665 /** 666 * paging_init - setup page tables 667 * 668 * paging_init() sets up the page tables for each node of the system and frees 669 * the bootmem allocator memory for general use. 670 */ 671 void __init paging_init(void) 672 { 673 unsigned long max_dma; 674 unsigned long zones_size[MAX_NR_ZONES]; 675 unsigned long zholes_size[MAX_NR_ZONES]; 676 unsigned long pfn_offset = 0; 677 int node; 678 679 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; 680 681 /* so min() will work in count_node_pages */ 682 for_each_online_node(node) 683 mem_data[node].min_pfn = ~0UL; 684 685 efi_memmap_walk(filter_rsvd_memory, count_node_pages); 686 687 for_each_online_node(node) { 688 memset(zones_size, 0, sizeof(zones_size)); 689 memset(zholes_size, 0, sizeof(zholes_size)); 690 691 num_physpages += mem_data[node].num_physpages; 692 693 if (mem_data[node].min_pfn >= max_dma) { 694 /* All of this node's memory is above ZONE_DMA */ 695 zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - 696 mem_data[node].min_pfn; 697 zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn - 698 mem_data[node].min_pfn - 699 mem_data[node].num_physpages; 700 } else if (mem_data[node].max_pfn < max_dma) { 701 /* All of this node's memory is in ZONE_DMA */ 702 zones_size[ZONE_DMA] = mem_data[node].max_pfn - 703 mem_data[node].min_pfn; 704 zholes_size[ZONE_DMA] = mem_data[node].max_pfn - 705 mem_data[node].min_pfn - 706 mem_data[node].num_dma_physpages; 707 } else { 708 /* This node has memory in both zones */ 709 zones_size[ZONE_DMA] = max_dma - 710 mem_data[node].min_pfn; 711 zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - 712 mem_data[node].num_dma_physpages; 713 zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - 714 max_dma; 715 zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - 716 (mem_data[node].num_physpages - 717 mem_data[node].num_dma_physpages); 718 } 719 720 if (node == 0) { 721 vmalloc_end -= 722 PAGE_ALIGN(max_low_pfn * sizeof(struct page)); 723 vmem_map = (struct page *) vmalloc_end; 724 725 efi_memmap_walk(create_mem_map_page_table, NULL); 726 printk("Virtual mem_map starts at 0x%p\n", vmem_map); 727 } 728 729 pfn_offset = mem_data[node].min_pfn; 730 731 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; 732 free_area_init_node(node, NODE_DATA(node), zones_size, 733 pfn_offset, zholes_size); 734 } 735 736 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); 737 } 738