1 /* 2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. 3 * Copyright (c) 2001 Intel Corp. 4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> 5 * Copyright (c) 2002 NEC Corp. 6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> 7 * Copyright (c) 2004 Silicon Graphics, Inc 8 * Russ Anderson <rja@sgi.com> 9 * Jesse Barnes <jbarnes@sgi.com> 10 * Jack Steiner <steiner@sgi.com> 11 */ 12 13 /* 14 * Platform initialization for Discontig Memory 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/nmi.h> 20 #include <linux/swap.h> 21 #include <linux/bootmem.h> 22 #include <linux/acpi.h> 23 #include <linux/efi.h> 24 #include <linux/nodemask.h> 25 #include <linux/slab.h> 26 #include <asm/pgalloc.h> 27 #include <asm/tlb.h> 28 #include <asm/meminit.h> 29 #include <asm/numa.h> 30 #include <asm/sections.h> 31 32 /* 33 * Track per-node information needed to setup the boot memory allocator, the 34 * per-node areas, and the real VM. 35 */ 36 struct early_node_data { 37 struct ia64_node_data *node_data; 38 unsigned long pernode_addr; 39 unsigned long pernode_size; 40 #ifdef CONFIG_ZONE_DMA 41 unsigned long num_dma_physpages; 42 #endif 43 unsigned long min_pfn; 44 unsigned long max_pfn; 45 }; 46 47 static struct early_node_data mem_data[MAX_NUMNODES] __initdata; 48 static nodemask_t memory_less_mask __initdata; 49 50 pg_data_t *pgdat_list[MAX_NUMNODES]; 51 52 /* 53 * To prevent cache aliasing effects, align per-node structures so that they 54 * start at addresses that are strided by node number. 55 */ 56 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024) 57 #define NODEDATA_ALIGN(addr, node) \ 58 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \ 59 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1))) 60 61 /** 62 * build_node_maps - callback to setup bootmem structs for each node 63 * @start: physical start of range 64 * @len: length of range 65 * @node: node where this range resides 66 * 67 * We allocate a struct bootmem_data for each piece of memory that we wish to 68 * treat as a virtually contiguous block (i.e. each node). Each such block 69 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down 70 * if necessary. Any non-existent pages will simply be part of the virtual 71 * memmap. We also update min_low_pfn and max_low_pfn here as we receive 72 * memory ranges from the caller. 73 */ 74 static int __init build_node_maps(unsigned long start, unsigned long len, 75 int node) 76 { 77 unsigned long spfn, epfn, end = start + len; 78 struct bootmem_data *bdp = &bootmem_node_data[node]; 79 80 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; 81 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT; 82 83 if (!bdp->node_low_pfn) { 84 bdp->node_min_pfn = spfn; 85 bdp->node_low_pfn = epfn; 86 } else { 87 bdp->node_min_pfn = min(spfn, bdp->node_min_pfn); 88 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); 89 } 90 91 return 0; 92 } 93 94 /** 95 * early_nr_cpus_node - return number of cpus on a given node 96 * @node: node to check 97 * 98 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because 99 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been 100 * called yet. Note that node 0 will also count all non-existent cpus. 101 */ 102 static int __meminit early_nr_cpus_node(int node) 103 { 104 int cpu, n = 0; 105 106 for_each_possible_early_cpu(cpu) 107 if (node == node_cpuid[cpu].nid) 108 n++; 109 110 return n; 111 } 112 113 /** 114 * compute_pernodesize - compute size of pernode data 115 * @node: the node id. 116 */ 117 static unsigned long __meminit compute_pernodesize(int node) 118 { 119 unsigned long pernodesize = 0, cpus; 120 121 cpus = early_nr_cpus_node(node); 122 pernodesize += PERCPU_PAGE_SIZE * cpus; 123 pernodesize += node * L1_CACHE_BYTES; 124 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 125 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 126 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 127 pernodesize = PAGE_ALIGN(pernodesize); 128 return pernodesize; 129 } 130 131 /** 132 * per_cpu_node_setup - setup per-cpu areas on each node 133 * @cpu_data: per-cpu area on this node 134 * @node: node to setup 135 * 136 * Copy the static per-cpu data into the region we just set aside and then 137 * setup __per_cpu_offset for each CPU on this node. Return a pointer to 138 * the end of the area. 139 */ 140 static void *per_cpu_node_setup(void *cpu_data, int node) 141 { 142 #ifdef CONFIG_SMP 143 int cpu; 144 145 for_each_possible_early_cpu(cpu) { 146 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start; 147 148 if (node != node_cpuid[cpu].nid) 149 continue; 150 151 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start); 152 __per_cpu_offset[cpu] = (char *)__va(cpu_data) - 153 __per_cpu_start; 154 155 /* 156 * percpu area for cpu0 is moved from the __init area 157 * which is setup by head.S and used till this point. 158 * Update ar.k3. This move is ensures that percpu 159 * area for cpu0 is on the correct node and its 160 * virtual address isn't insanely far from other 161 * percpu areas which is important for congruent 162 * percpu allocator. 163 */ 164 if (cpu == 0) 165 ia64_set_kr(IA64_KR_PER_CPU_DATA, 166 (unsigned long)cpu_data - 167 (unsigned long)__per_cpu_start); 168 169 cpu_data += PERCPU_PAGE_SIZE; 170 } 171 #endif 172 return cpu_data; 173 } 174 175 #ifdef CONFIG_SMP 176 /** 177 * setup_per_cpu_areas - setup percpu areas 178 * 179 * Arch code has already allocated and initialized percpu areas. All 180 * this function has to do is to teach the determined layout to the 181 * dynamic percpu allocator, which happens to be more complex than 182 * creating whole new ones using helpers. 183 */ 184 void __init setup_per_cpu_areas(void) 185 { 186 struct pcpu_alloc_info *ai; 187 struct pcpu_group_info *uninitialized_var(gi); 188 unsigned int *cpu_map; 189 void *base; 190 unsigned long base_offset; 191 unsigned int cpu; 192 ssize_t static_size, reserved_size, dyn_size; 193 int node, prev_node, unit, nr_units, rc; 194 195 ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids); 196 if (!ai) 197 panic("failed to allocate pcpu_alloc_info"); 198 cpu_map = ai->groups[0].cpu_map; 199 200 /* determine base */ 201 base = (void *)ULONG_MAX; 202 for_each_possible_cpu(cpu) 203 base = min(base, 204 (void *)(__per_cpu_offset[cpu] + __per_cpu_start)); 205 base_offset = (void *)__per_cpu_start - base; 206 207 /* build cpu_map, units are grouped by node */ 208 unit = 0; 209 for_each_node(node) 210 for_each_possible_cpu(cpu) 211 if (node == node_cpuid[cpu].nid) 212 cpu_map[unit++] = cpu; 213 nr_units = unit; 214 215 /* set basic parameters */ 216 static_size = __per_cpu_end - __per_cpu_start; 217 reserved_size = PERCPU_MODULE_RESERVE; 218 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; 219 if (dyn_size < 0) 220 panic("percpu area overflow static=%zd reserved=%zd\n", 221 static_size, reserved_size); 222 223 ai->static_size = static_size; 224 ai->reserved_size = reserved_size; 225 ai->dyn_size = dyn_size; 226 ai->unit_size = PERCPU_PAGE_SIZE; 227 ai->atom_size = PAGE_SIZE; 228 ai->alloc_size = PERCPU_PAGE_SIZE; 229 230 /* 231 * CPUs are put into groups according to node. Walk cpu_map 232 * and create new groups at node boundaries. 233 */ 234 prev_node = -1; 235 ai->nr_groups = 0; 236 for (unit = 0; unit < nr_units; unit++) { 237 cpu = cpu_map[unit]; 238 node = node_cpuid[cpu].nid; 239 240 if (node == prev_node) { 241 gi->nr_units++; 242 continue; 243 } 244 prev_node = node; 245 246 gi = &ai->groups[ai->nr_groups++]; 247 gi->nr_units = 1; 248 gi->base_offset = __per_cpu_offset[cpu] + base_offset; 249 gi->cpu_map = &cpu_map[unit]; 250 } 251 252 rc = pcpu_setup_first_chunk(ai, base); 253 if (rc) 254 panic("failed to setup percpu area (err=%d)", rc); 255 256 pcpu_free_alloc_info(ai); 257 } 258 #endif 259 260 /** 261 * fill_pernode - initialize pernode data. 262 * @node: the node id. 263 * @pernode: physical address of pernode data 264 * @pernodesize: size of the pernode data 265 */ 266 static void __init fill_pernode(int node, unsigned long pernode, 267 unsigned long pernodesize) 268 { 269 void *cpu_data; 270 int cpus = early_nr_cpus_node(node); 271 struct bootmem_data *bdp = &bootmem_node_data[node]; 272 273 mem_data[node].pernode_addr = pernode; 274 mem_data[node].pernode_size = pernodesize; 275 memset(__va(pernode), 0, pernodesize); 276 277 cpu_data = (void *)pernode; 278 pernode += PERCPU_PAGE_SIZE * cpus; 279 pernode += node * L1_CACHE_BYTES; 280 281 pgdat_list[node] = __va(pernode); 282 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 283 284 mem_data[node].node_data = __va(pernode); 285 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 286 287 pgdat_list[node]->bdata = bdp; 288 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 289 290 cpu_data = per_cpu_node_setup(cpu_data, node); 291 292 return; 293 } 294 295 /** 296 * find_pernode_space - allocate memory for memory map and per-node structures 297 * @start: physical start of range 298 * @len: length of range 299 * @node: node where this range resides 300 * 301 * This routine reserves space for the per-cpu data struct, the list of 302 * pg_data_ts and the per-node data struct. Each node will have something like 303 * the following in the first chunk of addr. space large enough to hold it. 304 * 305 * ________________________ 306 * | | 307 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first 308 * | PERCPU_PAGE_SIZE * | start and length big enough 309 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. 310 * |------------------------| 311 * | local pg_data_t * | 312 * |------------------------| 313 * | local ia64_node_data | 314 * |------------------------| 315 * | ??? | 316 * |________________________| 317 * 318 * Once this space has been set aside, the bootmem maps are initialized. We 319 * could probably move the allocation of the per-cpu and ia64_node_data space 320 * outside of this function and use alloc_bootmem_node(), but doing it here 321 * is straightforward and we get the alignments we want so... 322 */ 323 static int __init find_pernode_space(unsigned long start, unsigned long len, 324 int node) 325 { 326 unsigned long spfn, epfn; 327 unsigned long pernodesize = 0, pernode, pages, mapsize; 328 struct bootmem_data *bdp = &bootmem_node_data[node]; 329 330 spfn = start >> PAGE_SHIFT; 331 epfn = (start + len) >> PAGE_SHIFT; 332 333 pages = bdp->node_low_pfn - bdp->node_min_pfn; 334 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; 335 336 /* 337 * Make sure this memory falls within this node's usable memory 338 * since we may have thrown some away in build_maps(). 339 */ 340 if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn) 341 return 0; 342 343 /* Don't setup this node's local space twice... */ 344 if (mem_data[node].pernode_addr) 345 return 0; 346 347 /* 348 * Calculate total size needed, incl. what's necessary 349 * for good alignment and alias prevention. 350 */ 351 pernodesize = compute_pernodesize(node); 352 pernode = NODEDATA_ALIGN(start, node); 353 354 /* Is this range big enough for what we want to store here? */ 355 if (start + len > (pernode + pernodesize + mapsize)) 356 fill_pernode(node, pernode, pernodesize); 357 358 return 0; 359 } 360 361 /** 362 * free_node_bootmem - free bootmem allocator memory for use 363 * @start: physical start of range 364 * @len: length of range 365 * @node: node where this range resides 366 * 367 * Simply calls the bootmem allocator to free the specified ranged from 368 * the given pg_data_t's bdata struct. After this function has been called 369 * for all the entries in the EFI memory map, the bootmem allocator will 370 * be ready to service allocation requests. 371 */ 372 static int __init free_node_bootmem(unsigned long start, unsigned long len, 373 int node) 374 { 375 free_bootmem_node(pgdat_list[node], start, len); 376 377 return 0; 378 } 379 380 /** 381 * reserve_pernode_space - reserve memory for per-node space 382 * 383 * Reserve the space used by the bootmem maps & per-node space in the boot 384 * allocator so that when we actually create the real mem maps we don't 385 * use their memory. 386 */ 387 static void __init reserve_pernode_space(void) 388 { 389 unsigned long base, size, pages; 390 struct bootmem_data *bdp; 391 int node; 392 393 for_each_online_node(node) { 394 pg_data_t *pdp = pgdat_list[node]; 395 396 if (node_isset(node, memory_less_mask)) 397 continue; 398 399 bdp = pdp->bdata; 400 401 /* First the bootmem_map itself */ 402 pages = bdp->node_low_pfn - bdp->node_min_pfn; 403 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; 404 base = __pa(bdp->node_bootmem_map); 405 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); 406 407 /* Now the per-node space */ 408 size = mem_data[node].pernode_size; 409 base = __pa(mem_data[node].pernode_addr); 410 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); 411 } 412 } 413 414 static void __meminit scatter_node_data(void) 415 { 416 pg_data_t **dst; 417 int node; 418 419 /* 420 * for_each_online_node() can't be used at here. 421 * node_online_map is not set for hot-added nodes at this time, 422 * because we are halfway through initialization of the new node's 423 * structures. If for_each_online_node() is used, a new node's 424 * pg_data_ptrs will be not initialized. Instead of using it, 425 * pgdat_list[] is checked. 426 */ 427 for_each_node(node) { 428 if (pgdat_list[node]) { 429 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs; 430 memcpy(dst, pgdat_list, sizeof(pgdat_list)); 431 } 432 } 433 } 434 435 /** 436 * initialize_pernode_data - fixup per-cpu & per-node pointers 437 * 438 * Each node's per-node area has a copy of the global pg_data_t list, so 439 * we copy that to each node here, as well as setting the per-cpu pointer 440 * to the local node data structure. The active_cpus field of the per-node 441 * structure gets setup by the platform_cpu_init() function later. 442 */ 443 static void __init initialize_pernode_data(void) 444 { 445 int cpu, node; 446 447 scatter_node_data(); 448 449 #ifdef CONFIG_SMP 450 /* Set the node_data pointer for each per-cpu struct */ 451 for_each_possible_early_cpu(cpu) { 452 node = node_cpuid[cpu].nid; 453 per_cpu(ia64_cpu_info, cpu).node_data = 454 mem_data[node].node_data; 455 } 456 #else 457 { 458 struct cpuinfo_ia64 *cpu0_cpu_info; 459 cpu = 0; 460 node = node_cpuid[cpu].nid; 461 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + 462 ((char *)&ia64_cpu_info - __per_cpu_start)); 463 cpu0_cpu_info->node_data = mem_data[node].node_data; 464 } 465 #endif /* CONFIG_SMP */ 466 } 467 468 /** 469 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit 470 * node but fall back to any other node when __alloc_bootmem_node fails 471 * for best. 472 * @nid: node id 473 * @pernodesize: size of this node's pernode data 474 */ 475 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize) 476 { 477 void *ptr = NULL; 478 u8 best = 0xff; 479 int bestnode = -1, node, anynode = 0; 480 481 for_each_online_node(node) { 482 if (node_isset(node, memory_less_mask)) 483 continue; 484 else if (node_distance(nid, node) < best) { 485 best = node_distance(nid, node); 486 bestnode = node; 487 } 488 anynode = node; 489 } 490 491 if (bestnode == -1) 492 bestnode = anynode; 493 494 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize, 495 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 496 497 return ptr; 498 } 499 500 /** 501 * memory_less_nodes - allocate and initialize CPU only nodes pernode 502 * information. 503 */ 504 static void __init memory_less_nodes(void) 505 { 506 unsigned long pernodesize; 507 void *pernode; 508 int node; 509 510 for_each_node_mask(node, memory_less_mask) { 511 pernodesize = compute_pernodesize(node); 512 pernode = memory_less_node_alloc(node, pernodesize); 513 fill_pernode(node, __pa(pernode), pernodesize); 514 } 515 516 return; 517 } 518 519 /** 520 * find_memory - walk the EFI memory map and setup the bootmem allocator 521 * 522 * Called early in boot to setup the bootmem allocator, and to 523 * allocate the per-cpu and per-node structures. 524 */ 525 void __init find_memory(void) 526 { 527 int node; 528 529 reserve_memory(); 530 531 if (num_online_nodes() == 0) { 532 printk(KERN_ERR "node info missing!\n"); 533 node_set_online(0); 534 } 535 536 nodes_or(memory_less_mask, memory_less_mask, node_online_map); 537 min_low_pfn = -1; 538 max_low_pfn = 0; 539 540 /* These actually end up getting called by call_pernode_memory() */ 541 efi_memmap_walk(filter_rsvd_memory, build_node_maps); 542 efi_memmap_walk(filter_rsvd_memory, find_pernode_space); 543 efi_memmap_walk(find_max_min_low_pfn, NULL); 544 545 for_each_online_node(node) 546 if (bootmem_node_data[node].node_low_pfn) { 547 node_clear(node, memory_less_mask); 548 mem_data[node].min_pfn = ~0UL; 549 } 550 551 efi_memmap_walk(filter_memory, register_active_ranges); 552 553 /* 554 * Initialize the boot memory maps in reverse order since that's 555 * what the bootmem allocator expects 556 */ 557 for (node = MAX_NUMNODES - 1; node >= 0; node--) { 558 unsigned long pernode, pernodesize, map; 559 struct bootmem_data *bdp; 560 561 if (!node_online(node)) 562 continue; 563 else if (node_isset(node, memory_less_mask)) 564 continue; 565 566 bdp = &bootmem_node_data[node]; 567 pernode = mem_data[node].pernode_addr; 568 pernodesize = mem_data[node].pernode_size; 569 map = pernode + pernodesize; 570 571 init_bootmem_node(pgdat_list[node], 572 map>>PAGE_SHIFT, 573 bdp->node_min_pfn, 574 bdp->node_low_pfn); 575 } 576 577 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); 578 579 reserve_pernode_space(); 580 memory_less_nodes(); 581 initialize_pernode_data(); 582 583 max_pfn = max_low_pfn; 584 585 find_initrd(); 586 } 587 588 #ifdef CONFIG_SMP 589 /** 590 * per_cpu_init - setup per-cpu variables 591 * 592 * find_pernode_space() does most of this already, we just need to set 593 * local_per_cpu_offset 594 */ 595 void *per_cpu_init(void) 596 { 597 int cpu; 598 static int first_time = 1; 599 600 if (first_time) { 601 first_time = 0; 602 for_each_possible_early_cpu(cpu) 603 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; 604 } 605 606 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 607 } 608 #endif /* CONFIG_SMP */ 609 610 /** 611 * show_mem - give short summary of memory stats 612 * 613 * Shows a simple page count of reserved and used pages in the system. 614 * For discontig machines, it does this on a per-pgdat basis. 615 */ 616 void show_mem(unsigned int filter) 617 { 618 int i, total_reserved = 0; 619 int total_shared = 0, total_cached = 0; 620 unsigned long total_present = 0; 621 pg_data_t *pgdat; 622 623 printk(KERN_INFO "Mem-info:\n"); 624 show_free_areas(filter); 625 if (filter & SHOW_MEM_FILTER_PAGE_COUNT) 626 return; 627 printk(KERN_INFO "Node memory in pages:\n"); 628 for_each_online_pgdat(pgdat) { 629 unsigned long present; 630 unsigned long flags; 631 int shared = 0, cached = 0, reserved = 0; 632 int nid = pgdat->node_id; 633 634 if (skip_free_areas_node(filter, nid)) 635 continue; 636 pgdat_resize_lock(pgdat, &flags); 637 present = pgdat->node_present_pages; 638 for(i = 0; i < pgdat->node_spanned_pages; i++) { 639 struct page *page; 640 if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) 641 touch_nmi_watchdog(); 642 if (pfn_valid(pgdat->node_start_pfn + i)) 643 page = pfn_to_page(pgdat->node_start_pfn + i); 644 else { 645 i = vmemmap_find_next_valid_pfn(nid, i) - 1; 646 continue; 647 } 648 if (PageReserved(page)) 649 reserved++; 650 else if (PageSwapCache(page)) 651 cached++; 652 else if (page_count(page)) 653 shared += page_count(page)-1; 654 } 655 pgdat_resize_unlock(pgdat, &flags); 656 total_present += present; 657 total_reserved += reserved; 658 total_cached += cached; 659 total_shared += shared; 660 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " 661 "shrd: %10d, swpd: %10d\n", nid, 662 present, reserved, shared, cached); 663 } 664 printk(KERN_INFO "%ld pages of RAM\n", total_present); 665 printk(KERN_INFO "%d reserved pages\n", total_reserved); 666 printk(KERN_INFO "%d pages shared\n", total_shared); 667 printk(KERN_INFO "%d pages swap cached\n", total_cached); 668 printk(KERN_INFO "Total of %ld pages in page table cache\n", 669 quicklist_total_size()); 670 printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages()); 671 } 672 673 /** 674 * call_pernode_memory - use SRAT to call callback functions with node info 675 * @start: physical start of range 676 * @len: length of range 677 * @arg: function to call for each range 678 * 679 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find 680 * out to which node a block of memory belongs. Ignore memory that we cannot 681 * identify, and split blocks that run across multiple nodes. 682 * 683 * Take this opportunity to round the start address up and the end address 684 * down to page boundaries. 685 */ 686 void call_pernode_memory(unsigned long start, unsigned long len, void *arg) 687 { 688 unsigned long rs, re, end = start + len; 689 void (*func)(unsigned long, unsigned long, int); 690 int i; 691 692 start = PAGE_ALIGN(start); 693 end &= PAGE_MASK; 694 if (start >= end) 695 return; 696 697 func = arg; 698 699 if (!num_node_memblks) { 700 /* No SRAT table, so assume one node (node 0) */ 701 if (start < end) 702 (*func)(start, end - start, 0); 703 return; 704 } 705 706 for (i = 0; i < num_node_memblks; i++) { 707 rs = max(start, node_memblk[i].start_paddr); 708 re = min(end, node_memblk[i].start_paddr + 709 node_memblk[i].size); 710 711 if (rs < re) 712 (*func)(rs, re - rs, node_memblk[i].nid); 713 714 if (re == end) 715 break; 716 } 717 } 718 719 /** 720 * count_node_pages - callback to build per-node memory info structures 721 * @start: physical start of range 722 * @len: length of range 723 * @node: node where this range resides 724 * 725 * Each node has it's own number of physical pages, DMAable pages, start, and 726 * end page frame number. This routine will be called by call_pernode_memory() 727 * for each piece of usable memory and will setup these values for each node. 728 * Very similar to build_maps(). 729 */ 730 static __init int count_node_pages(unsigned long start, unsigned long len, int node) 731 { 732 unsigned long end = start + len; 733 734 #ifdef CONFIG_ZONE_DMA 735 if (start <= __pa(MAX_DMA_ADDRESS)) 736 mem_data[node].num_dma_physpages += 737 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; 738 #endif 739 start = GRANULEROUNDDOWN(start); 740 end = GRANULEROUNDUP(end); 741 mem_data[node].max_pfn = max(mem_data[node].max_pfn, 742 end >> PAGE_SHIFT); 743 mem_data[node].min_pfn = min(mem_data[node].min_pfn, 744 start >> PAGE_SHIFT); 745 746 return 0; 747 } 748 749 /** 750 * paging_init - setup page tables 751 * 752 * paging_init() sets up the page tables for each node of the system and frees 753 * the bootmem allocator memory for general use. 754 */ 755 void __init paging_init(void) 756 { 757 unsigned long max_dma; 758 unsigned long pfn_offset = 0; 759 unsigned long max_pfn = 0; 760 int node; 761 unsigned long max_zone_pfns[MAX_NR_ZONES]; 762 763 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; 764 765 efi_memmap_walk(filter_rsvd_memory, count_node_pages); 766 767 sparse_memory_present_with_active_regions(MAX_NUMNODES); 768 sparse_init(); 769 770 #ifdef CONFIG_VIRTUAL_MEM_MAP 771 VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * 772 sizeof(struct page)); 773 vmem_map = (struct page *) VMALLOC_END; 774 efi_memmap_walk(create_mem_map_page_table, NULL); 775 printk("Virtual mem_map starts at 0x%p\n", vmem_map); 776 #endif 777 778 for_each_online_node(node) { 779 pfn_offset = mem_data[node].min_pfn; 780 781 #ifdef CONFIG_VIRTUAL_MEM_MAP 782 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; 783 #endif 784 if (mem_data[node].max_pfn > max_pfn) 785 max_pfn = mem_data[node].max_pfn; 786 } 787 788 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 789 #ifdef CONFIG_ZONE_DMA 790 max_zone_pfns[ZONE_DMA] = max_dma; 791 #endif 792 max_zone_pfns[ZONE_NORMAL] = max_pfn; 793 free_area_init_nodes(max_zone_pfns); 794 795 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); 796 } 797 798 #ifdef CONFIG_MEMORY_HOTPLUG 799 pg_data_t *arch_alloc_nodedata(int nid) 800 { 801 unsigned long size = compute_pernodesize(nid); 802 803 return kzalloc(size, GFP_KERNEL); 804 } 805 806 void arch_free_nodedata(pg_data_t *pgdat) 807 { 808 kfree(pgdat); 809 } 810 811 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat) 812 { 813 pgdat_list[update_node] = update_pgdat; 814 scatter_node_data(); 815 } 816 #endif 817 818 #ifdef CONFIG_SPARSEMEM_VMEMMAP 819 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) 820 { 821 return vmemmap_populate_basepages(start, end, node); 822 } 823 824 void vmemmap_free(unsigned long start, unsigned long end) 825 { 826 } 827 #endif 828