1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1998-2003 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Stephane Eranian <eranian@hpl.hp.com> 9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> 10 * Copyright (C) 1999 VA Linux Systems 11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. 13 * 14 * Routines used by ia64 machines with contiguous (or virtually contiguous) 15 * memory. 16 */ 17 #include <linux/bootmem.h> 18 #include <linux/efi.h> 19 #include <linux/memblock.h> 20 #include <linux/mm.h> 21 #include <linux/nmi.h> 22 #include <linux/swap.h> 23 24 #include <asm/meminit.h> 25 #include <asm/pgalloc.h> 26 #include <asm/pgtable.h> 27 #include <asm/sections.h> 28 #include <asm/mca.h> 29 30 #ifdef CONFIG_VIRTUAL_MEM_MAP 31 static unsigned long max_gap; 32 #endif 33 34 /** 35 * show_mem - give short summary of memory stats 36 * 37 * Shows a simple page count of reserved and used pages in the system. 38 * For discontig machines, it does this on a per-pgdat basis. 39 */ 40 void show_mem(unsigned int filter) 41 { 42 int i, total_reserved = 0; 43 int total_shared = 0, total_cached = 0; 44 unsigned long total_present = 0; 45 pg_data_t *pgdat; 46 47 printk(KERN_INFO "Mem-info:\n"); 48 show_free_areas(filter); 49 printk(KERN_INFO "Node memory in pages:\n"); 50 if (filter & SHOW_MEM_FILTER_PAGE_COUNT) 51 return; 52 for_each_online_pgdat(pgdat) { 53 unsigned long present; 54 unsigned long flags; 55 int shared = 0, cached = 0, reserved = 0; 56 int nid = pgdat->node_id; 57 58 if (skip_free_areas_node(filter, nid)) 59 continue; 60 pgdat_resize_lock(pgdat, &flags); 61 present = pgdat->node_present_pages; 62 for(i = 0; i < pgdat->node_spanned_pages; i++) { 63 struct page *page; 64 if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) 65 touch_nmi_watchdog(); 66 if (pfn_valid(pgdat->node_start_pfn + i)) 67 page = pfn_to_page(pgdat->node_start_pfn + i); 68 else { 69 #ifdef CONFIG_VIRTUAL_MEM_MAP 70 if (max_gap < LARGE_GAP) 71 continue; 72 #endif 73 i = vmemmap_find_next_valid_pfn(nid, i) - 1; 74 continue; 75 } 76 if (PageReserved(page)) 77 reserved++; 78 else if (PageSwapCache(page)) 79 cached++; 80 else if (page_count(page)) 81 shared += page_count(page)-1; 82 } 83 pgdat_resize_unlock(pgdat, &flags); 84 total_present += present; 85 total_reserved += reserved; 86 total_cached += cached; 87 total_shared += shared; 88 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " 89 "shrd: %10d, swpd: %10d\n", nid, 90 present, reserved, shared, cached); 91 } 92 printk(KERN_INFO "%ld pages of RAM\n", total_present); 93 printk(KERN_INFO "%d reserved pages\n", total_reserved); 94 printk(KERN_INFO "%d pages shared\n", total_shared); 95 printk(KERN_INFO "%d pages swap cached\n", total_cached); 96 printk(KERN_INFO "Total of %ld pages in page table cache\n", 97 quicklist_total_size()); 98 printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages()); 99 } 100 101 102 /* physical address where the bootmem map is located */ 103 unsigned long bootmap_start; 104 105 /** 106 * find_bootmap_location - callback to find a memory area for the bootmap 107 * @start: start of region 108 * @end: end of region 109 * @arg: unused callback data 110 * 111 * Find a place to put the bootmap and return its starting address in 112 * bootmap_start. This address must be page-aligned. 113 */ 114 static int __init 115 find_bootmap_location (u64 start, u64 end, void *arg) 116 { 117 u64 needed = *(unsigned long *)arg; 118 u64 range_start, range_end, free_start; 119 int i; 120 121 #if IGNORE_PFN0 122 if (start == PAGE_OFFSET) { 123 start += PAGE_SIZE; 124 if (start >= end) 125 return 0; 126 } 127 #endif 128 129 free_start = PAGE_OFFSET; 130 131 for (i = 0; i < num_rsvd_regions; i++) { 132 range_start = max(start, free_start); 133 range_end = min(end, rsvd_region[i].start & PAGE_MASK); 134 135 free_start = PAGE_ALIGN(rsvd_region[i].end); 136 137 if (range_end <= range_start) 138 continue; /* skip over empty range */ 139 140 if (range_end - range_start >= needed) { 141 bootmap_start = __pa(range_start); 142 return -1; /* done */ 143 } 144 145 /* nothing more available in this segment */ 146 if (range_end == end) 147 return 0; 148 } 149 return 0; 150 } 151 152 #ifdef CONFIG_SMP 153 static void *cpu_data; 154 /** 155 * per_cpu_init - setup per-cpu variables 156 * 157 * Allocate and setup per-cpu data areas. 158 */ 159 void * __cpuinit 160 per_cpu_init (void) 161 { 162 static bool first_time = true; 163 void *cpu0_data = __cpu0_per_cpu; 164 unsigned int cpu; 165 166 if (!first_time) 167 goto skip; 168 first_time = false; 169 170 /* 171 * get_free_pages() cannot be used before cpu_init() done. 172 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs 173 * to avoid that AP calls get_zeroed_page(). 174 */ 175 for_each_possible_cpu(cpu) { 176 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start; 177 178 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start); 179 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start; 180 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; 181 182 /* 183 * percpu area for cpu0 is moved from the __init area 184 * which is setup by head.S and used till this point. 185 * Update ar.k3. This move is ensures that percpu 186 * area for cpu0 is on the correct node and its 187 * virtual address isn't insanely far from other 188 * percpu areas which is important for congruent 189 * percpu allocator. 190 */ 191 if (cpu == 0) 192 ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) - 193 (unsigned long)__per_cpu_start); 194 195 cpu_data += PERCPU_PAGE_SIZE; 196 } 197 skip: 198 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 199 } 200 201 static inline void 202 alloc_per_cpu_data(void) 203 { 204 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(), 205 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 206 } 207 208 /** 209 * setup_per_cpu_areas - setup percpu areas 210 * 211 * Arch code has already allocated and initialized percpu areas. All 212 * this function has to do is to teach the determined layout to the 213 * dynamic percpu allocator, which happens to be more complex than 214 * creating whole new ones using helpers. 215 */ 216 void __init 217 setup_per_cpu_areas(void) 218 { 219 struct pcpu_alloc_info *ai; 220 struct pcpu_group_info *gi; 221 unsigned int cpu; 222 ssize_t static_size, reserved_size, dyn_size; 223 int rc; 224 225 ai = pcpu_alloc_alloc_info(1, num_possible_cpus()); 226 if (!ai) 227 panic("failed to allocate pcpu_alloc_info"); 228 gi = &ai->groups[0]; 229 230 /* units are assigned consecutively to possible cpus */ 231 for_each_possible_cpu(cpu) 232 gi->cpu_map[gi->nr_units++] = cpu; 233 234 /* set parameters */ 235 static_size = __per_cpu_end - __per_cpu_start; 236 reserved_size = PERCPU_MODULE_RESERVE; 237 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; 238 if (dyn_size < 0) 239 panic("percpu area overflow static=%zd reserved=%zd\n", 240 static_size, reserved_size); 241 242 ai->static_size = static_size; 243 ai->reserved_size = reserved_size; 244 ai->dyn_size = dyn_size; 245 ai->unit_size = PERCPU_PAGE_SIZE; 246 ai->atom_size = PAGE_SIZE; 247 ai->alloc_size = PERCPU_PAGE_SIZE; 248 249 rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]); 250 if (rc) 251 panic("failed to setup percpu area (err=%d)", rc); 252 253 pcpu_free_alloc_info(ai); 254 } 255 #else 256 #define alloc_per_cpu_data() do { } while (0) 257 #endif /* CONFIG_SMP */ 258 259 /** 260 * find_memory - setup memory map 261 * 262 * Walk the EFI memory map and find usable memory for the system, taking 263 * into account reserved areas. 264 */ 265 void __init 266 find_memory (void) 267 { 268 unsigned long bootmap_size; 269 270 reserve_memory(); 271 272 /* first find highest page frame number */ 273 min_low_pfn = ~0UL; 274 max_low_pfn = 0; 275 efi_memmap_walk(find_max_min_low_pfn, NULL); 276 max_pfn = max_low_pfn; 277 /* how many bytes to cover all the pages */ 278 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; 279 280 /* look for a location to hold the bootmap */ 281 bootmap_start = ~0UL; 282 efi_memmap_walk(find_bootmap_location, &bootmap_size); 283 if (bootmap_start == ~0UL) 284 panic("Cannot find %ld bytes for bootmap\n", bootmap_size); 285 286 bootmap_size = init_bootmem_node(NODE_DATA(0), 287 (bootmap_start >> PAGE_SHIFT), 0, max_pfn); 288 289 /* Free all available memory, then mark bootmem-map as being in use. */ 290 efi_memmap_walk(filter_rsvd_memory, free_bootmem); 291 reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT); 292 293 find_initrd(); 294 295 alloc_per_cpu_data(); 296 } 297 298 static int count_pages(u64 start, u64 end, void *arg) 299 { 300 unsigned long *count = arg; 301 302 *count += (end - start) >> PAGE_SHIFT; 303 return 0; 304 } 305 306 /* 307 * Set up the page tables. 308 */ 309 310 void __init 311 paging_init (void) 312 { 313 unsigned long max_dma; 314 unsigned long max_zone_pfns[MAX_NR_ZONES]; 315 316 num_physpages = 0; 317 efi_memmap_walk(count_pages, &num_physpages); 318 319 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 320 #ifdef CONFIG_ZONE_DMA 321 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; 322 max_zone_pfns[ZONE_DMA] = max_dma; 323 #endif 324 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 325 326 #ifdef CONFIG_VIRTUAL_MEM_MAP 327 efi_memmap_walk(filter_memory, register_active_ranges); 328 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); 329 if (max_gap < LARGE_GAP) { 330 vmem_map = (struct page *) 0; 331 free_area_init_nodes(max_zone_pfns); 332 } else { 333 unsigned long map_size; 334 335 /* allocate virtual_mem_map */ 336 337 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * 338 sizeof(struct page)); 339 VMALLOC_END -= map_size; 340 vmem_map = (struct page *) VMALLOC_END; 341 efi_memmap_walk(create_mem_map_page_table, NULL); 342 343 /* 344 * alloc_node_mem_map makes an adjustment for mem_map 345 * which isn't compatible with vmem_map. 346 */ 347 NODE_DATA(0)->node_mem_map = vmem_map + 348 find_min_pfn_with_active_regions(); 349 free_area_init_nodes(max_zone_pfns); 350 351 printk("Virtual mem_map starts at 0x%p\n", mem_map); 352 } 353 #else /* !CONFIG_VIRTUAL_MEM_MAP */ 354 memblock_add_node(0, PFN_PHYS(max_low_pfn), 0); 355 free_area_init_nodes(max_zone_pfns); 356 #endif /* !CONFIG_VIRTUAL_MEM_MAP */ 357 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); 358 } 359