xref: /openbmc/linux/arch/ia64/mm/contig.c (revision ca79522c)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/memblock.h>
20 #include <linux/mm.h>
21 #include <linux/nmi.h>
22 #include <linux/swap.h>
23 
24 #include <asm/meminit.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/sections.h>
28 #include <asm/mca.h>
29 
30 #ifdef CONFIG_VIRTUAL_MEM_MAP
31 static unsigned long max_gap;
32 #endif
33 
34 /**
35  * show_mem - give short summary of memory stats
36  *
37  * Shows a simple page count of reserved and used pages in the system.
38  * For discontig machines, it does this on a per-pgdat basis.
39  */
40 void show_mem(unsigned int filter)
41 {
42 	int i, total_reserved = 0;
43 	int total_shared = 0, total_cached = 0;
44 	unsigned long total_present = 0;
45 	pg_data_t *pgdat;
46 
47 	printk(KERN_INFO "Mem-info:\n");
48 	show_free_areas(filter);
49 	printk(KERN_INFO "Node memory in pages:\n");
50 	if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
51 		return;
52 	for_each_online_pgdat(pgdat) {
53 		unsigned long present;
54 		unsigned long flags;
55 		int shared = 0, cached = 0, reserved = 0;
56 		int nid = pgdat->node_id;
57 
58 		if (skip_free_areas_node(filter, nid))
59 			continue;
60 		pgdat_resize_lock(pgdat, &flags);
61 		present = pgdat->node_present_pages;
62 		for(i = 0; i < pgdat->node_spanned_pages; i++) {
63 			struct page *page;
64 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
65 				touch_nmi_watchdog();
66 			if (pfn_valid(pgdat->node_start_pfn + i))
67 				page = pfn_to_page(pgdat->node_start_pfn + i);
68 			else {
69 #ifdef CONFIG_VIRTUAL_MEM_MAP
70 				if (max_gap < LARGE_GAP)
71 					continue;
72 #endif
73 				i = vmemmap_find_next_valid_pfn(nid, i) - 1;
74 				continue;
75 			}
76 			if (PageReserved(page))
77 				reserved++;
78 			else if (PageSwapCache(page))
79 				cached++;
80 			else if (page_count(page))
81 				shared += page_count(page)-1;
82 		}
83 		pgdat_resize_unlock(pgdat, &flags);
84 		total_present += present;
85 		total_reserved += reserved;
86 		total_cached += cached;
87 		total_shared += shared;
88 		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
89 		       "shrd: %10d, swpd: %10d\n", nid,
90 		       present, reserved, shared, cached);
91 	}
92 	printk(KERN_INFO "%ld pages of RAM\n", total_present);
93 	printk(KERN_INFO "%d reserved pages\n", total_reserved);
94 	printk(KERN_INFO "%d pages shared\n", total_shared);
95 	printk(KERN_INFO "%d pages swap cached\n", total_cached);
96 	printk(KERN_INFO "Total of %ld pages in page table cache\n",
97 	       quicklist_total_size());
98 	printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
99 }
100 
101 
102 /* physical address where the bootmem map is located */
103 unsigned long bootmap_start;
104 
105 /**
106  * find_bootmap_location - callback to find a memory area for the bootmap
107  * @start: start of region
108  * @end: end of region
109  * @arg: unused callback data
110  *
111  * Find a place to put the bootmap and return its starting address in
112  * bootmap_start.  This address must be page-aligned.
113  */
114 static int __init
115 find_bootmap_location (u64 start, u64 end, void *arg)
116 {
117 	u64 needed = *(unsigned long *)arg;
118 	u64 range_start, range_end, free_start;
119 	int i;
120 
121 #if IGNORE_PFN0
122 	if (start == PAGE_OFFSET) {
123 		start += PAGE_SIZE;
124 		if (start >= end)
125 			return 0;
126 	}
127 #endif
128 
129 	free_start = PAGE_OFFSET;
130 
131 	for (i = 0; i < num_rsvd_regions; i++) {
132 		range_start = max(start, free_start);
133 		range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
134 
135 		free_start = PAGE_ALIGN(rsvd_region[i].end);
136 
137 		if (range_end <= range_start)
138 			continue; /* skip over empty range */
139 
140 		if (range_end - range_start >= needed) {
141 			bootmap_start = __pa(range_start);
142 			return -1;	/* done */
143 		}
144 
145 		/* nothing more available in this segment */
146 		if (range_end == end)
147 			return 0;
148 	}
149 	return 0;
150 }
151 
152 #ifdef CONFIG_SMP
153 static void *cpu_data;
154 /**
155  * per_cpu_init - setup per-cpu variables
156  *
157  * Allocate and setup per-cpu data areas.
158  */
159 void * __cpuinit
160 per_cpu_init (void)
161 {
162 	static bool first_time = true;
163 	void *cpu0_data = __cpu0_per_cpu;
164 	unsigned int cpu;
165 
166 	if (!first_time)
167 		goto skip;
168 	first_time = false;
169 
170 	/*
171 	 * get_free_pages() cannot be used before cpu_init() done.
172 	 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
173 	 * to avoid that AP calls get_zeroed_page().
174 	 */
175 	for_each_possible_cpu(cpu) {
176 		void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
177 
178 		memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
179 		__per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
180 		per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
181 
182 		/*
183 		 * percpu area for cpu0 is moved from the __init area
184 		 * which is setup by head.S and used till this point.
185 		 * Update ar.k3.  This move is ensures that percpu
186 		 * area for cpu0 is on the correct node and its
187 		 * virtual address isn't insanely far from other
188 		 * percpu areas which is important for congruent
189 		 * percpu allocator.
190 		 */
191 		if (cpu == 0)
192 			ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
193 				    (unsigned long)__per_cpu_start);
194 
195 		cpu_data += PERCPU_PAGE_SIZE;
196 	}
197 skip:
198 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
199 }
200 
201 static inline void
202 alloc_per_cpu_data(void)
203 {
204 	cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
205 				   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
206 }
207 
208 /**
209  * setup_per_cpu_areas - setup percpu areas
210  *
211  * Arch code has already allocated and initialized percpu areas.  All
212  * this function has to do is to teach the determined layout to the
213  * dynamic percpu allocator, which happens to be more complex than
214  * creating whole new ones using helpers.
215  */
216 void __init
217 setup_per_cpu_areas(void)
218 {
219 	struct pcpu_alloc_info *ai;
220 	struct pcpu_group_info *gi;
221 	unsigned int cpu;
222 	ssize_t static_size, reserved_size, dyn_size;
223 	int rc;
224 
225 	ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
226 	if (!ai)
227 		panic("failed to allocate pcpu_alloc_info");
228 	gi = &ai->groups[0];
229 
230 	/* units are assigned consecutively to possible cpus */
231 	for_each_possible_cpu(cpu)
232 		gi->cpu_map[gi->nr_units++] = cpu;
233 
234 	/* set parameters */
235 	static_size = __per_cpu_end - __per_cpu_start;
236 	reserved_size = PERCPU_MODULE_RESERVE;
237 	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
238 	if (dyn_size < 0)
239 		panic("percpu area overflow static=%zd reserved=%zd\n",
240 		      static_size, reserved_size);
241 
242 	ai->static_size		= static_size;
243 	ai->reserved_size	= reserved_size;
244 	ai->dyn_size		= dyn_size;
245 	ai->unit_size		= PERCPU_PAGE_SIZE;
246 	ai->atom_size		= PAGE_SIZE;
247 	ai->alloc_size		= PERCPU_PAGE_SIZE;
248 
249 	rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
250 	if (rc)
251 		panic("failed to setup percpu area (err=%d)", rc);
252 
253 	pcpu_free_alloc_info(ai);
254 }
255 #else
256 #define alloc_per_cpu_data() do { } while (0)
257 #endif /* CONFIG_SMP */
258 
259 /**
260  * find_memory - setup memory map
261  *
262  * Walk the EFI memory map and find usable memory for the system, taking
263  * into account reserved areas.
264  */
265 void __init
266 find_memory (void)
267 {
268 	unsigned long bootmap_size;
269 
270 	reserve_memory();
271 
272 	/* first find highest page frame number */
273 	min_low_pfn = ~0UL;
274 	max_low_pfn = 0;
275 	efi_memmap_walk(find_max_min_low_pfn, NULL);
276 	max_pfn = max_low_pfn;
277 	/* how many bytes to cover all the pages */
278 	bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
279 
280 	/* look for a location to hold the bootmap */
281 	bootmap_start = ~0UL;
282 	efi_memmap_walk(find_bootmap_location, &bootmap_size);
283 	if (bootmap_start == ~0UL)
284 		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
285 
286 	bootmap_size = init_bootmem_node(NODE_DATA(0),
287 			(bootmap_start >> PAGE_SHIFT), 0, max_pfn);
288 
289 	/* Free all available memory, then mark bootmem-map as being in use. */
290 	efi_memmap_walk(filter_rsvd_memory, free_bootmem);
291 	reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
292 
293 	find_initrd();
294 
295 	alloc_per_cpu_data();
296 }
297 
298 static int count_pages(u64 start, u64 end, void *arg)
299 {
300 	unsigned long *count = arg;
301 
302 	*count += (end - start) >> PAGE_SHIFT;
303 	return 0;
304 }
305 
306 /*
307  * Set up the page tables.
308  */
309 
310 void __init
311 paging_init (void)
312 {
313 	unsigned long max_dma;
314 	unsigned long max_zone_pfns[MAX_NR_ZONES];
315 
316 	num_physpages = 0;
317 	efi_memmap_walk(count_pages, &num_physpages);
318 
319 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
320 #ifdef CONFIG_ZONE_DMA
321 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
322 	max_zone_pfns[ZONE_DMA] = max_dma;
323 #endif
324 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
325 
326 #ifdef CONFIG_VIRTUAL_MEM_MAP
327 	efi_memmap_walk(filter_memory, register_active_ranges);
328 	efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
329 	if (max_gap < LARGE_GAP) {
330 		vmem_map = (struct page *) 0;
331 		free_area_init_nodes(max_zone_pfns);
332 	} else {
333 		unsigned long map_size;
334 
335 		/* allocate virtual_mem_map */
336 
337 		map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
338 			sizeof(struct page));
339 		VMALLOC_END -= map_size;
340 		vmem_map = (struct page *) VMALLOC_END;
341 		efi_memmap_walk(create_mem_map_page_table, NULL);
342 
343 		/*
344 		 * alloc_node_mem_map makes an adjustment for mem_map
345 		 * which isn't compatible with vmem_map.
346 		 */
347 		NODE_DATA(0)->node_mem_map = vmem_map +
348 			find_min_pfn_with_active_regions();
349 		free_area_init_nodes(max_zone_pfns);
350 
351 		printk("Virtual mem_map starts at 0x%p\n", mem_map);
352 	}
353 #else /* !CONFIG_VIRTUAL_MEM_MAP */
354 	memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
355 	free_area_init_nodes(max_zone_pfns);
356 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
357 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
358 }
359