1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1998-2003 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Stephane Eranian <eranian@hpl.hp.com> 9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> 10 * Copyright (C) 1999 VA Linux Systems 11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. 13 * 14 * Routines used by ia64 machines with contiguous (or virtually contiguous) 15 * memory. 16 */ 17 #include <linux/bootmem.h> 18 #include <linux/efi.h> 19 #include <linux/memblock.h> 20 #include <linux/mm.h> 21 #include <linux/nmi.h> 22 #include <linux/swap.h> 23 24 #include <asm/meminit.h> 25 #include <asm/pgalloc.h> 26 #include <asm/pgtable.h> 27 #include <asm/sections.h> 28 #include <asm/mca.h> 29 30 #ifdef CONFIG_VIRTUAL_MEM_MAP 31 static unsigned long max_gap; 32 #endif 33 34 /** 35 * show_mem - give short summary of memory stats 36 * 37 * Shows a simple page count of reserved and used pages in the system. 38 * For discontig machines, it does this on a per-pgdat basis. 39 */ 40 void show_mem(unsigned int filter) 41 { 42 int i, total_reserved = 0; 43 int total_shared = 0, total_cached = 0; 44 unsigned long total_present = 0; 45 pg_data_t *pgdat; 46 47 printk(KERN_INFO "Mem-info:\n"); 48 show_free_areas(filter); 49 printk(KERN_INFO "Node memory in pages:\n"); 50 for_each_online_pgdat(pgdat) { 51 unsigned long present; 52 unsigned long flags; 53 int shared = 0, cached = 0, reserved = 0; 54 int nid = pgdat->node_id; 55 56 if (skip_free_areas_node(filter, nid)) 57 continue; 58 pgdat_resize_lock(pgdat, &flags); 59 present = pgdat->node_present_pages; 60 for(i = 0; i < pgdat->node_spanned_pages; i++) { 61 struct page *page; 62 if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) 63 touch_nmi_watchdog(); 64 if (pfn_valid(pgdat->node_start_pfn + i)) 65 page = pfn_to_page(pgdat->node_start_pfn + i); 66 else { 67 #ifdef CONFIG_VIRTUAL_MEM_MAP 68 if (max_gap < LARGE_GAP) 69 continue; 70 #endif 71 i = vmemmap_find_next_valid_pfn(nid, i) - 1; 72 continue; 73 } 74 if (PageReserved(page)) 75 reserved++; 76 else if (PageSwapCache(page)) 77 cached++; 78 else if (page_count(page)) 79 shared += page_count(page)-1; 80 } 81 pgdat_resize_unlock(pgdat, &flags); 82 total_present += present; 83 total_reserved += reserved; 84 total_cached += cached; 85 total_shared += shared; 86 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " 87 "shrd: %10d, swpd: %10d\n", nid, 88 present, reserved, shared, cached); 89 } 90 printk(KERN_INFO "%ld pages of RAM\n", total_present); 91 printk(KERN_INFO "%d reserved pages\n", total_reserved); 92 printk(KERN_INFO "%d pages shared\n", total_shared); 93 printk(KERN_INFO "%d pages swap cached\n", total_cached); 94 printk(KERN_INFO "Total of %ld pages in page table cache\n", 95 quicklist_total_size()); 96 printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages()); 97 } 98 99 100 /* physical address where the bootmem map is located */ 101 unsigned long bootmap_start; 102 103 /** 104 * find_bootmap_location - callback to find a memory area for the bootmap 105 * @start: start of region 106 * @end: end of region 107 * @arg: unused callback data 108 * 109 * Find a place to put the bootmap and return its starting address in 110 * bootmap_start. This address must be page-aligned. 111 */ 112 static int __init 113 find_bootmap_location (u64 start, u64 end, void *arg) 114 { 115 u64 needed = *(unsigned long *)arg; 116 u64 range_start, range_end, free_start; 117 int i; 118 119 #if IGNORE_PFN0 120 if (start == PAGE_OFFSET) { 121 start += PAGE_SIZE; 122 if (start >= end) 123 return 0; 124 } 125 #endif 126 127 free_start = PAGE_OFFSET; 128 129 for (i = 0; i < num_rsvd_regions; i++) { 130 range_start = max(start, free_start); 131 range_end = min(end, rsvd_region[i].start & PAGE_MASK); 132 133 free_start = PAGE_ALIGN(rsvd_region[i].end); 134 135 if (range_end <= range_start) 136 continue; /* skip over empty range */ 137 138 if (range_end - range_start >= needed) { 139 bootmap_start = __pa(range_start); 140 return -1; /* done */ 141 } 142 143 /* nothing more available in this segment */ 144 if (range_end == end) 145 return 0; 146 } 147 return 0; 148 } 149 150 #ifdef CONFIG_SMP 151 static void *cpu_data; 152 /** 153 * per_cpu_init - setup per-cpu variables 154 * 155 * Allocate and setup per-cpu data areas. 156 */ 157 void * __cpuinit 158 per_cpu_init (void) 159 { 160 static bool first_time = true; 161 void *cpu0_data = __cpu0_per_cpu; 162 unsigned int cpu; 163 164 if (!first_time) 165 goto skip; 166 first_time = false; 167 168 /* 169 * get_free_pages() cannot be used before cpu_init() done. 170 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs 171 * to avoid that AP calls get_zeroed_page(). 172 */ 173 for_each_possible_cpu(cpu) { 174 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start; 175 176 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start); 177 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start; 178 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; 179 180 /* 181 * percpu area for cpu0 is moved from the __init area 182 * which is setup by head.S and used till this point. 183 * Update ar.k3. This move is ensures that percpu 184 * area for cpu0 is on the correct node and its 185 * virtual address isn't insanely far from other 186 * percpu areas which is important for congruent 187 * percpu allocator. 188 */ 189 if (cpu == 0) 190 ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) - 191 (unsigned long)__per_cpu_start); 192 193 cpu_data += PERCPU_PAGE_SIZE; 194 } 195 skip: 196 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 197 } 198 199 static inline void 200 alloc_per_cpu_data(void) 201 { 202 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(), 203 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 204 } 205 206 /** 207 * setup_per_cpu_areas - setup percpu areas 208 * 209 * Arch code has already allocated and initialized percpu areas. All 210 * this function has to do is to teach the determined layout to the 211 * dynamic percpu allocator, which happens to be more complex than 212 * creating whole new ones using helpers. 213 */ 214 void __init 215 setup_per_cpu_areas(void) 216 { 217 struct pcpu_alloc_info *ai; 218 struct pcpu_group_info *gi; 219 unsigned int cpu; 220 ssize_t static_size, reserved_size, dyn_size; 221 int rc; 222 223 ai = pcpu_alloc_alloc_info(1, num_possible_cpus()); 224 if (!ai) 225 panic("failed to allocate pcpu_alloc_info"); 226 gi = &ai->groups[0]; 227 228 /* units are assigned consecutively to possible cpus */ 229 for_each_possible_cpu(cpu) 230 gi->cpu_map[gi->nr_units++] = cpu; 231 232 /* set parameters */ 233 static_size = __per_cpu_end - __per_cpu_start; 234 reserved_size = PERCPU_MODULE_RESERVE; 235 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; 236 if (dyn_size < 0) 237 panic("percpu area overflow static=%zd reserved=%zd\n", 238 static_size, reserved_size); 239 240 ai->static_size = static_size; 241 ai->reserved_size = reserved_size; 242 ai->dyn_size = dyn_size; 243 ai->unit_size = PERCPU_PAGE_SIZE; 244 ai->atom_size = PAGE_SIZE; 245 ai->alloc_size = PERCPU_PAGE_SIZE; 246 247 rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]); 248 if (rc) 249 panic("failed to setup percpu area (err=%d)", rc); 250 251 pcpu_free_alloc_info(ai); 252 } 253 #else 254 #define alloc_per_cpu_data() do { } while (0) 255 #endif /* CONFIG_SMP */ 256 257 /** 258 * find_memory - setup memory map 259 * 260 * Walk the EFI memory map and find usable memory for the system, taking 261 * into account reserved areas. 262 */ 263 void __init 264 find_memory (void) 265 { 266 unsigned long bootmap_size; 267 268 reserve_memory(); 269 270 /* first find highest page frame number */ 271 min_low_pfn = ~0UL; 272 max_low_pfn = 0; 273 efi_memmap_walk(find_max_min_low_pfn, NULL); 274 max_pfn = max_low_pfn; 275 /* how many bytes to cover all the pages */ 276 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; 277 278 /* look for a location to hold the bootmap */ 279 bootmap_start = ~0UL; 280 efi_memmap_walk(find_bootmap_location, &bootmap_size); 281 if (bootmap_start == ~0UL) 282 panic("Cannot find %ld bytes for bootmap\n", bootmap_size); 283 284 bootmap_size = init_bootmem_node(NODE_DATA(0), 285 (bootmap_start >> PAGE_SHIFT), 0, max_pfn); 286 287 /* Free all available memory, then mark bootmem-map as being in use. */ 288 efi_memmap_walk(filter_rsvd_memory, free_bootmem); 289 reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT); 290 291 find_initrd(); 292 293 alloc_per_cpu_data(); 294 } 295 296 static int count_pages(u64 start, u64 end, void *arg) 297 { 298 unsigned long *count = arg; 299 300 *count += (end - start) >> PAGE_SHIFT; 301 return 0; 302 } 303 304 /* 305 * Set up the page tables. 306 */ 307 308 void __init 309 paging_init (void) 310 { 311 unsigned long max_dma; 312 unsigned long max_zone_pfns[MAX_NR_ZONES]; 313 314 num_physpages = 0; 315 efi_memmap_walk(count_pages, &num_physpages); 316 317 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 318 #ifdef CONFIG_ZONE_DMA 319 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; 320 max_zone_pfns[ZONE_DMA] = max_dma; 321 #endif 322 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 323 324 #ifdef CONFIG_VIRTUAL_MEM_MAP 325 efi_memmap_walk(filter_memory, register_active_ranges); 326 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); 327 if (max_gap < LARGE_GAP) { 328 vmem_map = (struct page *) 0; 329 free_area_init_nodes(max_zone_pfns); 330 } else { 331 unsigned long map_size; 332 333 /* allocate virtual_mem_map */ 334 335 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * 336 sizeof(struct page)); 337 VMALLOC_END -= map_size; 338 vmem_map = (struct page *) VMALLOC_END; 339 efi_memmap_walk(create_mem_map_page_table, NULL); 340 341 /* 342 * alloc_node_mem_map makes an adjustment for mem_map 343 * which isn't compatible with vmem_map. 344 */ 345 NODE_DATA(0)->node_mem_map = vmem_map + 346 find_min_pfn_with_active_regions(); 347 free_area_init_nodes(max_zone_pfns); 348 349 printk("Virtual mem_map starts at 0x%p\n", mem_map); 350 } 351 #else /* !CONFIG_VIRTUAL_MEM_MAP */ 352 memblock_add_node(0, PFN_PHYS(max_low_pfn), 0); 353 free_area_init_nodes(max_zone_pfns); 354 #endif /* !CONFIG_VIRTUAL_MEM_MAP */ 355 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); 356 } 357