xref: /openbmc/linux/arch/ia64/mm/contig.c (revision 97da55fc)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/memblock.h>
20 #include <linux/mm.h>
21 #include <linux/nmi.h>
22 #include <linux/swap.h>
23 
24 #include <asm/meminit.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/sections.h>
28 #include <asm/mca.h>
29 
30 #ifdef CONFIG_VIRTUAL_MEM_MAP
31 static unsigned long max_gap;
32 #endif
33 
34 /**
35  * show_mem - give short summary of memory stats
36  *
37  * Shows a simple page count of reserved and used pages in the system.
38  * For discontig machines, it does this on a per-pgdat basis.
39  */
40 void show_mem(unsigned int filter)
41 {
42 	int i, total_reserved = 0;
43 	int total_shared = 0, total_cached = 0;
44 	unsigned long total_present = 0;
45 	pg_data_t *pgdat;
46 
47 	printk(KERN_INFO "Mem-info:\n");
48 	show_free_areas(filter);
49 	printk(KERN_INFO "Node memory in pages:\n");
50 	for_each_online_pgdat(pgdat) {
51 		unsigned long present;
52 		unsigned long flags;
53 		int shared = 0, cached = 0, reserved = 0;
54 		int nid = pgdat->node_id;
55 
56 		if (skip_free_areas_node(filter, nid))
57 			continue;
58 		pgdat_resize_lock(pgdat, &flags);
59 		present = pgdat->node_present_pages;
60 		for(i = 0; i < pgdat->node_spanned_pages; i++) {
61 			struct page *page;
62 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
63 				touch_nmi_watchdog();
64 			if (pfn_valid(pgdat->node_start_pfn + i))
65 				page = pfn_to_page(pgdat->node_start_pfn + i);
66 			else {
67 #ifdef CONFIG_VIRTUAL_MEM_MAP
68 				if (max_gap < LARGE_GAP)
69 					continue;
70 #endif
71 				i = vmemmap_find_next_valid_pfn(nid, i) - 1;
72 				continue;
73 			}
74 			if (PageReserved(page))
75 				reserved++;
76 			else if (PageSwapCache(page))
77 				cached++;
78 			else if (page_count(page))
79 				shared += page_count(page)-1;
80 		}
81 		pgdat_resize_unlock(pgdat, &flags);
82 		total_present += present;
83 		total_reserved += reserved;
84 		total_cached += cached;
85 		total_shared += shared;
86 		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
87 		       "shrd: %10d, swpd: %10d\n", nid,
88 		       present, reserved, shared, cached);
89 	}
90 	printk(KERN_INFO "%ld pages of RAM\n", total_present);
91 	printk(KERN_INFO "%d reserved pages\n", total_reserved);
92 	printk(KERN_INFO "%d pages shared\n", total_shared);
93 	printk(KERN_INFO "%d pages swap cached\n", total_cached);
94 	printk(KERN_INFO "Total of %ld pages in page table cache\n",
95 	       quicklist_total_size());
96 	printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
97 }
98 
99 
100 /* physical address where the bootmem map is located */
101 unsigned long bootmap_start;
102 
103 /**
104  * find_bootmap_location - callback to find a memory area for the bootmap
105  * @start: start of region
106  * @end: end of region
107  * @arg: unused callback data
108  *
109  * Find a place to put the bootmap and return its starting address in
110  * bootmap_start.  This address must be page-aligned.
111  */
112 static int __init
113 find_bootmap_location (u64 start, u64 end, void *arg)
114 {
115 	u64 needed = *(unsigned long *)arg;
116 	u64 range_start, range_end, free_start;
117 	int i;
118 
119 #if IGNORE_PFN0
120 	if (start == PAGE_OFFSET) {
121 		start += PAGE_SIZE;
122 		if (start >= end)
123 			return 0;
124 	}
125 #endif
126 
127 	free_start = PAGE_OFFSET;
128 
129 	for (i = 0; i < num_rsvd_regions; i++) {
130 		range_start = max(start, free_start);
131 		range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
132 
133 		free_start = PAGE_ALIGN(rsvd_region[i].end);
134 
135 		if (range_end <= range_start)
136 			continue; /* skip over empty range */
137 
138 		if (range_end - range_start >= needed) {
139 			bootmap_start = __pa(range_start);
140 			return -1;	/* done */
141 		}
142 
143 		/* nothing more available in this segment */
144 		if (range_end == end)
145 			return 0;
146 	}
147 	return 0;
148 }
149 
150 #ifdef CONFIG_SMP
151 static void *cpu_data;
152 /**
153  * per_cpu_init - setup per-cpu variables
154  *
155  * Allocate and setup per-cpu data areas.
156  */
157 void * __cpuinit
158 per_cpu_init (void)
159 {
160 	static bool first_time = true;
161 	void *cpu0_data = __cpu0_per_cpu;
162 	unsigned int cpu;
163 
164 	if (!first_time)
165 		goto skip;
166 	first_time = false;
167 
168 	/*
169 	 * get_free_pages() cannot be used before cpu_init() done.
170 	 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
171 	 * to avoid that AP calls get_zeroed_page().
172 	 */
173 	for_each_possible_cpu(cpu) {
174 		void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
175 
176 		memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
177 		__per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
178 		per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
179 
180 		/*
181 		 * percpu area for cpu0 is moved from the __init area
182 		 * which is setup by head.S and used till this point.
183 		 * Update ar.k3.  This move is ensures that percpu
184 		 * area for cpu0 is on the correct node and its
185 		 * virtual address isn't insanely far from other
186 		 * percpu areas which is important for congruent
187 		 * percpu allocator.
188 		 */
189 		if (cpu == 0)
190 			ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
191 				    (unsigned long)__per_cpu_start);
192 
193 		cpu_data += PERCPU_PAGE_SIZE;
194 	}
195 skip:
196 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
197 }
198 
199 static inline void
200 alloc_per_cpu_data(void)
201 {
202 	cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
203 				   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
204 }
205 
206 /**
207  * setup_per_cpu_areas - setup percpu areas
208  *
209  * Arch code has already allocated and initialized percpu areas.  All
210  * this function has to do is to teach the determined layout to the
211  * dynamic percpu allocator, which happens to be more complex than
212  * creating whole new ones using helpers.
213  */
214 void __init
215 setup_per_cpu_areas(void)
216 {
217 	struct pcpu_alloc_info *ai;
218 	struct pcpu_group_info *gi;
219 	unsigned int cpu;
220 	ssize_t static_size, reserved_size, dyn_size;
221 	int rc;
222 
223 	ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
224 	if (!ai)
225 		panic("failed to allocate pcpu_alloc_info");
226 	gi = &ai->groups[0];
227 
228 	/* units are assigned consecutively to possible cpus */
229 	for_each_possible_cpu(cpu)
230 		gi->cpu_map[gi->nr_units++] = cpu;
231 
232 	/* set parameters */
233 	static_size = __per_cpu_end - __per_cpu_start;
234 	reserved_size = PERCPU_MODULE_RESERVE;
235 	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
236 	if (dyn_size < 0)
237 		panic("percpu area overflow static=%zd reserved=%zd\n",
238 		      static_size, reserved_size);
239 
240 	ai->static_size		= static_size;
241 	ai->reserved_size	= reserved_size;
242 	ai->dyn_size		= dyn_size;
243 	ai->unit_size		= PERCPU_PAGE_SIZE;
244 	ai->atom_size		= PAGE_SIZE;
245 	ai->alloc_size		= PERCPU_PAGE_SIZE;
246 
247 	rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
248 	if (rc)
249 		panic("failed to setup percpu area (err=%d)", rc);
250 
251 	pcpu_free_alloc_info(ai);
252 }
253 #else
254 #define alloc_per_cpu_data() do { } while (0)
255 #endif /* CONFIG_SMP */
256 
257 /**
258  * find_memory - setup memory map
259  *
260  * Walk the EFI memory map and find usable memory for the system, taking
261  * into account reserved areas.
262  */
263 void __init
264 find_memory (void)
265 {
266 	unsigned long bootmap_size;
267 
268 	reserve_memory();
269 
270 	/* first find highest page frame number */
271 	min_low_pfn = ~0UL;
272 	max_low_pfn = 0;
273 	efi_memmap_walk(find_max_min_low_pfn, NULL);
274 	max_pfn = max_low_pfn;
275 	/* how many bytes to cover all the pages */
276 	bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
277 
278 	/* look for a location to hold the bootmap */
279 	bootmap_start = ~0UL;
280 	efi_memmap_walk(find_bootmap_location, &bootmap_size);
281 	if (bootmap_start == ~0UL)
282 		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
283 
284 	bootmap_size = init_bootmem_node(NODE_DATA(0),
285 			(bootmap_start >> PAGE_SHIFT), 0, max_pfn);
286 
287 	/* Free all available memory, then mark bootmem-map as being in use. */
288 	efi_memmap_walk(filter_rsvd_memory, free_bootmem);
289 	reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
290 
291 	find_initrd();
292 
293 	alloc_per_cpu_data();
294 }
295 
296 static int count_pages(u64 start, u64 end, void *arg)
297 {
298 	unsigned long *count = arg;
299 
300 	*count += (end - start) >> PAGE_SHIFT;
301 	return 0;
302 }
303 
304 /*
305  * Set up the page tables.
306  */
307 
308 void __init
309 paging_init (void)
310 {
311 	unsigned long max_dma;
312 	unsigned long max_zone_pfns[MAX_NR_ZONES];
313 
314 	num_physpages = 0;
315 	efi_memmap_walk(count_pages, &num_physpages);
316 
317 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
318 #ifdef CONFIG_ZONE_DMA
319 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
320 	max_zone_pfns[ZONE_DMA] = max_dma;
321 #endif
322 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
323 
324 #ifdef CONFIG_VIRTUAL_MEM_MAP
325 	efi_memmap_walk(filter_memory, register_active_ranges);
326 	efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
327 	if (max_gap < LARGE_GAP) {
328 		vmem_map = (struct page *) 0;
329 		free_area_init_nodes(max_zone_pfns);
330 	} else {
331 		unsigned long map_size;
332 
333 		/* allocate virtual_mem_map */
334 
335 		map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
336 			sizeof(struct page));
337 		VMALLOC_END -= map_size;
338 		vmem_map = (struct page *) VMALLOC_END;
339 		efi_memmap_walk(create_mem_map_page_table, NULL);
340 
341 		/*
342 		 * alloc_node_mem_map makes an adjustment for mem_map
343 		 * which isn't compatible with vmem_map.
344 		 */
345 		NODE_DATA(0)->node_mem_map = vmem_map +
346 			find_min_pfn_with_active_regions();
347 		free_area_init_nodes(max_zone_pfns);
348 
349 		printk("Virtual mem_map starts at 0x%p\n", mem_map);
350 	}
351 #else /* !CONFIG_VIRTUAL_MEM_MAP */
352 	memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
353 	free_area_init_nodes(max_zone_pfns);
354 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
355 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
356 }
357