1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1998-2003 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Stephane Eranian <eranian@hpl.hp.com> 9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> 10 * Copyright (C) 1999 VA Linux Systems 11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. 13 * 14 * Routines used by ia64 machines with contiguous (or virtually contiguous) 15 * memory. 16 */ 17 #include <linux/bootmem.h> 18 #include <linux/efi.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 22 #include <asm/meminit.h> 23 #include <asm/pgalloc.h> 24 #include <asm/pgtable.h> 25 #include <asm/sections.h> 26 #include <asm/mca.h> 27 28 #ifdef CONFIG_VIRTUAL_MEM_MAP 29 static unsigned long max_gap; 30 #endif 31 32 /** 33 * show_mem - give short summary of memory stats 34 * 35 * Shows a simple page count of reserved and used pages in the system. 36 * For discontig machines, it does this on a per-pgdat basis. 37 */ 38 void show_mem(void) 39 { 40 int i, total_reserved = 0; 41 int total_shared = 0, total_cached = 0; 42 unsigned long total_present = 0; 43 pg_data_t *pgdat; 44 45 printk(KERN_INFO "Mem-info:\n"); 46 show_free_areas(); 47 printk(KERN_INFO "Free swap: %6ldkB\n", 48 nr_swap_pages<<(PAGE_SHIFT-10)); 49 printk(KERN_INFO "Node memory in pages:\n"); 50 for_each_online_pgdat(pgdat) { 51 unsigned long present; 52 unsigned long flags; 53 int shared = 0, cached = 0, reserved = 0; 54 55 pgdat_resize_lock(pgdat, &flags); 56 present = pgdat->node_present_pages; 57 for(i = 0; i < pgdat->node_spanned_pages; i++) { 58 struct page *page; 59 if (pfn_valid(pgdat->node_start_pfn + i)) 60 page = pfn_to_page(pgdat->node_start_pfn + i); 61 else { 62 #ifdef CONFIG_VIRTUAL_MEM_MAP 63 if (max_gap < LARGE_GAP) 64 continue; 65 #endif 66 i = vmemmap_find_next_valid_pfn(pgdat->node_id, 67 i) - 1; 68 continue; 69 } 70 if (PageReserved(page)) 71 reserved++; 72 else if (PageSwapCache(page)) 73 cached++; 74 else if (page_count(page)) 75 shared += page_count(page)-1; 76 } 77 pgdat_resize_unlock(pgdat, &flags); 78 total_present += present; 79 total_reserved += reserved; 80 total_cached += cached; 81 total_shared += shared; 82 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " 83 "shrd: %10d, swpd: %10d\n", pgdat->node_id, 84 present, reserved, shared, cached); 85 } 86 printk(KERN_INFO "%ld pages of RAM\n", total_present); 87 printk(KERN_INFO "%d reserved pages\n", total_reserved); 88 printk(KERN_INFO "%d pages shared\n", total_shared); 89 printk(KERN_INFO "%d pages swap cached\n", total_cached); 90 printk(KERN_INFO "Total of %ld pages in page table cache\n", 91 quicklist_total_size()); 92 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); 93 } 94 95 96 /* physical address where the bootmem map is located */ 97 unsigned long bootmap_start; 98 99 /** 100 * find_bootmap_location - callback to find a memory area for the bootmap 101 * @start: start of region 102 * @end: end of region 103 * @arg: unused callback data 104 * 105 * Find a place to put the bootmap and return its starting address in 106 * bootmap_start. This address must be page-aligned. 107 */ 108 static int __init 109 find_bootmap_location (unsigned long start, unsigned long end, void *arg) 110 { 111 unsigned long needed = *(unsigned long *)arg; 112 unsigned long range_start, range_end, free_start; 113 int i; 114 115 #if IGNORE_PFN0 116 if (start == PAGE_OFFSET) { 117 start += PAGE_SIZE; 118 if (start >= end) 119 return 0; 120 } 121 #endif 122 123 free_start = PAGE_OFFSET; 124 125 for (i = 0; i < num_rsvd_regions; i++) { 126 range_start = max(start, free_start); 127 range_end = min(end, rsvd_region[i].start & PAGE_MASK); 128 129 free_start = PAGE_ALIGN(rsvd_region[i].end); 130 131 if (range_end <= range_start) 132 continue; /* skip over empty range */ 133 134 if (range_end - range_start >= needed) { 135 bootmap_start = __pa(range_start); 136 return -1; /* done */ 137 } 138 139 /* nothing more available in this segment */ 140 if (range_end == end) 141 return 0; 142 } 143 return 0; 144 } 145 146 /** 147 * find_memory - setup memory map 148 * 149 * Walk the EFI memory map and find usable memory for the system, taking 150 * into account reserved areas. 151 */ 152 void __init 153 find_memory (void) 154 { 155 unsigned long bootmap_size; 156 157 reserve_memory(); 158 159 /* first find highest page frame number */ 160 min_low_pfn = ~0UL; 161 max_low_pfn = 0; 162 efi_memmap_walk(find_max_min_low_pfn, NULL); 163 max_pfn = max_low_pfn; 164 /* how many bytes to cover all the pages */ 165 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; 166 167 /* look for a location to hold the bootmap */ 168 bootmap_start = ~0UL; 169 efi_memmap_walk(find_bootmap_location, &bootmap_size); 170 if (bootmap_start == ~0UL) 171 panic("Cannot find %ld bytes for bootmap\n", bootmap_size); 172 173 bootmap_size = init_bootmem_node(NODE_DATA(0), 174 (bootmap_start >> PAGE_SHIFT), 0, max_pfn); 175 176 /* Free all available memory, then mark bootmem-map as being in use. */ 177 efi_memmap_walk(filter_rsvd_memory, free_bootmem); 178 reserve_bootmem(bootmap_start, bootmap_size); 179 180 find_initrd(); 181 182 } 183 184 #ifdef CONFIG_SMP 185 /** 186 * per_cpu_init - setup per-cpu variables 187 * 188 * Allocate and setup per-cpu data areas. 189 */ 190 void * __cpuinit 191 per_cpu_init (void) 192 { 193 void *cpu_data; 194 int cpu; 195 static int first_time=1; 196 197 /* 198 * get_free_pages() cannot be used before cpu_init() done. BSP 199 * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls 200 * get_zeroed_page(). 201 */ 202 if (first_time) { 203 first_time=0; 204 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS, 205 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 206 for (cpu = 0; cpu < NR_CPUS; cpu++) { 207 memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start); 208 __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start; 209 cpu_data += PERCPU_PAGE_SIZE; 210 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; 211 } 212 } 213 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 214 } 215 #endif /* CONFIG_SMP */ 216 217 static int 218 count_pages (u64 start, u64 end, void *arg) 219 { 220 unsigned long *count = arg; 221 222 *count += (end - start) >> PAGE_SHIFT; 223 return 0; 224 } 225 226 /* 227 * Set up the page tables. 228 */ 229 230 void __init 231 paging_init (void) 232 { 233 unsigned long max_dma; 234 unsigned long max_zone_pfns[MAX_NR_ZONES]; 235 236 num_physpages = 0; 237 efi_memmap_walk(count_pages, &num_physpages); 238 239 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 240 #ifdef CONFIG_ZONE_DMA 241 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; 242 max_zone_pfns[ZONE_DMA] = max_dma; 243 #endif 244 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 245 246 #ifdef CONFIG_VIRTUAL_MEM_MAP 247 efi_memmap_walk(register_active_ranges, NULL); 248 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); 249 if (max_gap < LARGE_GAP) { 250 vmem_map = (struct page *) 0; 251 free_area_init_nodes(max_zone_pfns); 252 } else { 253 unsigned long map_size; 254 255 /* allocate virtual_mem_map */ 256 257 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * 258 sizeof(struct page)); 259 vmalloc_end -= map_size; 260 vmem_map = (struct page *) vmalloc_end; 261 efi_memmap_walk(create_mem_map_page_table, NULL); 262 263 /* 264 * alloc_node_mem_map makes an adjustment for mem_map 265 * which isn't compatible with vmem_map. 266 */ 267 NODE_DATA(0)->node_mem_map = vmem_map + 268 find_min_pfn_with_active_regions(); 269 free_area_init_nodes(max_zone_pfns); 270 271 printk("Virtual mem_map starts at 0x%p\n", mem_map); 272 } 273 #else /* !CONFIG_VIRTUAL_MEM_MAP */ 274 add_active_range(0, 0, max_low_pfn); 275 free_area_init_nodes(max_zone_pfns); 276 #endif /* !CONFIG_VIRTUAL_MEM_MAP */ 277 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); 278 } 279