xref: /openbmc/linux/arch/ia64/mm/contig.c (revision 54525552)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22 
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
27 #include <asm/mca.h>
28 
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long max_gap;
31 #endif
32 
33 /**
34  * show_mem - give short summary of memory stats
35  *
36  * Shows a simple page count of reserved and used pages in the system.
37  * For discontig machines, it does this on a per-pgdat basis.
38  */
39 void show_mem(unsigned int filter)
40 {
41 	int i, total_reserved = 0;
42 	int total_shared = 0, total_cached = 0;
43 	unsigned long total_present = 0;
44 	pg_data_t *pgdat;
45 
46 	printk(KERN_INFO "Mem-info:\n");
47 	show_free_areas();
48 	printk(KERN_INFO "Node memory in pages:\n");
49 	for_each_online_pgdat(pgdat) {
50 		unsigned long present;
51 		unsigned long flags;
52 		int shared = 0, cached = 0, reserved = 0;
53 
54 		pgdat_resize_lock(pgdat, &flags);
55 		present = pgdat->node_present_pages;
56 		for(i = 0; i < pgdat->node_spanned_pages; i++) {
57 			struct page *page;
58 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
59 				touch_nmi_watchdog();
60 			if (pfn_valid(pgdat->node_start_pfn + i))
61 				page = pfn_to_page(pgdat->node_start_pfn + i);
62 			else {
63 #ifdef CONFIG_VIRTUAL_MEM_MAP
64 				if (max_gap < LARGE_GAP)
65 					continue;
66 #endif
67 				i = vmemmap_find_next_valid_pfn(pgdat->node_id,
68 					 i) - 1;
69 				continue;
70 			}
71 			if (PageReserved(page))
72 				reserved++;
73 			else if (PageSwapCache(page))
74 				cached++;
75 			else if (page_count(page))
76 				shared += page_count(page)-1;
77 		}
78 		pgdat_resize_unlock(pgdat, &flags);
79 		total_present += present;
80 		total_reserved += reserved;
81 		total_cached += cached;
82 		total_shared += shared;
83 		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
84 		       "shrd: %10d, swpd: %10d\n", pgdat->node_id,
85 		       present, reserved, shared, cached);
86 	}
87 	printk(KERN_INFO "%ld pages of RAM\n", total_present);
88 	printk(KERN_INFO "%d reserved pages\n", total_reserved);
89 	printk(KERN_INFO "%d pages shared\n", total_shared);
90 	printk(KERN_INFO "%d pages swap cached\n", total_cached);
91 	printk(KERN_INFO "Total of %ld pages in page table cache\n",
92 	       quicklist_total_size());
93 	printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
94 }
95 
96 
97 /* physical address where the bootmem map is located */
98 unsigned long bootmap_start;
99 
100 /**
101  * find_bootmap_location - callback to find a memory area for the bootmap
102  * @start: start of region
103  * @end: end of region
104  * @arg: unused callback data
105  *
106  * Find a place to put the bootmap and return its starting address in
107  * bootmap_start.  This address must be page-aligned.
108  */
109 static int __init
110 find_bootmap_location (u64 start, u64 end, void *arg)
111 {
112 	u64 needed = *(unsigned long *)arg;
113 	u64 range_start, range_end, free_start;
114 	int i;
115 
116 #if IGNORE_PFN0
117 	if (start == PAGE_OFFSET) {
118 		start += PAGE_SIZE;
119 		if (start >= end)
120 			return 0;
121 	}
122 #endif
123 
124 	free_start = PAGE_OFFSET;
125 
126 	for (i = 0; i < num_rsvd_regions; i++) {
127 		range_start = max(start, free_start);
128 		range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
129 
130 		free_start = PAGE_ALIGN(rsvd_region[i].end);
131 
132 		if (range_end <= range_start)
133 			continue; /* skip over empty range */
134 
135 		if (range_end - range_start >= needed) {
136 			bootmap_start = __pa(range_start);
137 			return -1;	/* done */
138 		}
139 
140 		/* nothing more available in this segment */
141 		if (range_end == end)
142 			return 0;
143 	}
144 	return 0;
145 }
146 
147 #ifdef CONFIG_SMP
148 static void *cpu_data;
149 /**
150  * per_cpu_init - setup per-cpu variables
151  *
152  * Allocate and setup per-cpu data areas.
153  */
154 void * __cpuinit
155 per_cpu_init (void)
156 {
157 	static bool first_time = true;
158 	void *cpu0_data = __cpu0_per_cpu;
159 	unsigned int cpu;
160 
161 	if (!first_time)
162 		goto skip;
163 	first_time = false;
164 
165 	/*
166 	 * get_free_pages() cannot be used before cpu_init() done.
167 	 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
168 	 * to avoid that AP calls get_zeroed_page().
169 	 */
170 	for_each_possible_cpu(cpu) {
171 		void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
172 
173 		memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
174 		__per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
175 		per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
176 
177 		/*
178 		 * percpu area for cpu0 is moved from the __init area
179 		 * which is setup by head.S and used till this point.
180 		 * Update ar.k3.  This move is ensures that percpu
181 		 * area for cpu0 is on the correct node and its
182 		 * virtual address isn't insanely far from other
183 		 * percpu areas which is important for congruent
184 		 * percpu allocator.
185 		 */
186 		if (cpu == 0)
187 			ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
188 				    (unsigned long)__per_cpu_start);
189 
190 		cpu_data += PERCPU_PAGE_SIZE;
191 	}
192 skip:
193 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
194 }
195 
196 static inline void
197 alloc_per_cpu_data(void)
198 {
199 	cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
200 				   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
201 }
202 
203 /**
204  * setup_per_cpu_areas - setup percpu areas
205  *
206  * Arch code has already allocated and initialized percpu areas.  All
207  * this function has to do is to teach the determined layout to the
208  * dynamic percpu allocator, which happens to be more complex than
209  * creating whole new ones using helpers.
210  */
211 void __init
212 setup_per_cpu_areas(void)
213 {
214 	struct pcpu_alloc_info *ai;
215 	struct pcpu_group_info *gi;
216 	unsigned int cpu;
217 	ssize_t static_size, reserved_size, dyn_size;
218 	int rc;
219 
220 	ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
221 	if (!ai)
222 		panic("failed to allocate pcpu_alloc_info");
223 	gi = &ai->groups[0];
224 
225 	/* units are assigned consecutively to possible cpus */
226 	for_each_possible_cpu(cpu)
227 		gi->cpu_map[gi->nr_units++] = cpu;
228 
229 	/* set parameters */
230 	static_size = __per_cpu_end - __per_cpu_start;
231 	reserved_size = PERCPU_MODULE_RESERVE;
232 	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
233 	if (dyn_size < 0)
234 		panic("percpu area overflow static=%zd reserved=%zd\n",
235 		      static_size, reserved_size);
236 
237 	ai->static_size		= static_size;
238 	ai->reserved_size	= reserved_size;
239 	ai->dyn_size		= dyn_size;
240 	ai->unit_size		= PERCPU_PAGE_SIZE;
241 	ai->atom_size		= PAGE_SIZE;
242 	ai->alloc_size		= PERCPU_PAGE_SIZE;
243 
244 	rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
245 	if (rc)
246 		panic("failed to setup percpu area (err=%d)", rc);
247 
248 	pcpu_free_alloc_info(ai);
249 }
250 #else
251 #define alloc_per_cpu_data() do { } while (0)
252 #endif /* CONFIG_SMP */
253 
254 /**
255  * find_memory - setup memory map
256  *
257  * Walk the EFI memory map and find usable memory for the system, taking
258  * into account reserved areas.
259  */
260 void __init
261 find_memory (void)
262 {
263 	unsigned long bootmap_size;
264 
265 	reserve_memory();
266 
267 	/* first find highest page frame number */
268 	min_low_pfn = ~0UL;
269 	max_low_pfn = 0;
270 	efi_memmap_walk(find_max_min_low_pfn, NULL);
271 	max_pfn = max_low_pfn;
272 	/* how many bytes to cover all the pages */
273 	bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
274 
275 	/* look for a location to hold the bootmap */
276 	bootmap_start = ~0UL;
277 	efi_memmap_walk(find_bootmap_location, &bootmap_size);
278 	if (bootmap_start == ~0UL)
279 		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
280 
281 	bootmap_size = init_bootmem_node(NODE_DATA(0),
282 			(bootmap_start >> PAGE_SHIFT), 0, max_pfn);
283 
284 	/* Free all available memory, then mark bootmem-map as being in use. */
285 	efi_memmap_walk(filter_rsvd_memory, free_bootmem);
286 	reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
287 
288 	find_initrd();
289 
290 	alloc_per_cpu_data();
291 }
292 
293 static int count_pages(u64 start, u64 end, void *arg)
294 {
295 	unsigned long *count = arg;
296 
297 	*count += (end - start) >> PAGE_SHIFT;
298 	return 0;
299 }
300 
301 /*
302  * Set up the page tables.
303  */
304 
305 void __init
306 paging_init (void)
307 {
308 	unsigned long max_dma;
309 	unsigned long max_zone_pfns[MAX_NR_ZONES];
310 
311 	num_physpages = 0;
312 	efi_memmap_walk(count_pages, &num_physpages);
313 
314 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
315 #ifdef CONFIG_ZONE_DMA
316 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
317 	max_zone_pfns[ZONE_DMA] = max_dma;
318 #endif
319 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
320 
321 #ifdef CONFIG_VIRTUAL_MEM_MAP
322 	efi_memmap_walk(filter_memory, register_active_ranges);
323 	efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
324 	if (max_gap < LARGE_GAP) {
325 		vmem_map = (struct page *) 0;
326 		free_area_init_nodes(max_zone_pfns);
327 	} else {
328 		unsigned long map_size;
329 
330 		/* allocate virtual_mem_map */
331 
332 		map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
333 			sizeof(struct page));
334 		VMALLOC_END -= map_size;
335 		vmem_map = (struct page *) VMALLOC_END;
336 		efi_memmap_walk(create_mem_map_page_table, NULL);
337 
338 		/*
339 		 * alloc_node_mem_map makes an adjustment for mem_map
340 		 * which isn't compatible with vmem_map.
341 		 */
342 		NODE_DATA(0)->node_mem_map = vmem_map +
343 			find_min_pfn_with_active_regions();
344 		free_area_init_nodes(max_zone_pfns);
345 
346 		printk("Virtual mem_map starts at 0x%p\n", mem_map);
347 	}
348 #else /* !CONFIG_VIRTUAL_MEM_MAP */
349 	add_active_range(0, 0, max_low_pfn);
350 	free_area_init_nodes(max_zone_pfns);
351 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
352 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
353 }
354