xref: /openbmc/linux/arch/ia64/lib/memcpy_mck.S (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1/*
2 * Itanium 2-optimized version of memcpy and copy_user function
3 *
4 * Inputs:
5 * 	in0:	destination address
6 *	in1:	source address
7 *	in2:	number of bytes to copy
8 * Output:
9 *	for memcpy:    return dest
10 * 	for copy_user: return 0 if success,
11 *		       or number of byte NOT copied if error occurred.
12 *
13 * Copyright (C) 2002 Intel Corp.
14 * Copyright (C) 2002 Ken Chen <kenneth.w.chen@intel.com>
15 */
16#include <asm/asmmacro.h>
17#include <asm/page.h>
18
19#define EK(y...) EX(y)
20
21/* McKinley specific optimization */
22
23#define retval		r8
24#define saved_pfs	r31
25#define saved_lc	r10
26#define saved_pr	r11
27#define saved_in0	r14
28#define saved_in1	r15
29#define saved_in2	r16
30
31#define src0		r2
32#define src1		r3
33#define dst0		r17
34#define dst1		r18
35#define cnt		r9
36
37/* r19-r30 are temp for each code section */
38#define PREFETCH_DIST	8
39#define src_pre_mem	r19
40#define dst_pre_mem	r20
41#define src_pre_l2	r21
42#define dst_pre_l2	r22
43#define t1		r23
44#define t2		r24
45#define t3		r25
46#define t4		r26
47#define t5		t1	// alias!
48#define t6		t2	// alias!
49#define t7		t3	// alias!
50#define n8		r27
51#define t9		t5	// alias!
52#define t10		t4	// alias!
53#define t11		t7	// alias!
54#define t12		t6	// alias!
55#define t14		t10	// alias!
56#define t13		r28
57#define t15		r29
58#define tmp		r30
59
60/* defines for long_copy block */
61#define	A	0
62#define B	(PREFETCH_DIST)
63#define C	(B + PREFETCH_DIST)
64#define D	(C + 1)
65#define N	(D + 1)
66#define Nrot	((N + 7) & ~7)
67
68/* alias */
69#define in0		r32
70#define in1		r33
71#define in2		r34
72
73GLOBAL_ENTRY(memcpy)
74	and	r28=0x7,in0
75	and	r29=0x7,in1
76	mov	f6=f0
77	mov	retval=in0
78	br.cond.sptk .common_code
79	;;
80END(memcpy)
81GLOBAL_ENTRY(__copy_user)
82	.prologue
83// check dest alignment
84	and	r28=0x7,in0
85	and	r29=0x7,in1
86	mov	f6=f1
87	mov	saved_in0=in0	// save dest pointer
88	mov	saved_in1=in1	// save src pointer
89	mov	retval=r0	// initialize return value
90	;;
91.common_code:
92	cmp.gt	p15,p0=8,in2	// check for small size
93	cmp.ne	p13,p0=0,r28	// check dest alignment
94	cmp.ne	p14,p0=0,r29	// check src alignment
95	add	src0=0,in1
96	sub	r30=8,r28	// for .align_dest
97	mov	saved_in2=in2	// save len
98	;;
99	add	dst0=0,in0
100	add	dst1=1,in0	// dest odd index
101	cmp.le	p6,p0 = 1,r30	// for .align_dest
102(p15)	br.cond.dpnt .memcpy_short
103(p13)	br.cond.dpnt .align_dest
104(p14)	br.cond.dpnt .unaligned_src
105	;;
106
107// both dest and src are aligned on 8-byte boundary
108.aligned_src:
109	.save ar.pfs, saved_pfs
110	alloc	saved_pfs=ar.pfs,3,Nrot-3,0,Nrot
111	.save pr, saved_pr
112	mov	saved_pr=pr
113
114	shr.u	cnt=in2,7	// this much cache line
115	;;
116	cmp.lt	p6,p0=2*PREFETCH_DIST,cnt
117	cmp.lt	p7,p8=1,cnt
118	.save ar.lc, saved_lc
119	mov	saved_lc=ar.lc
120	.body
121	add	cnt=-1,cnt
122	add	src_pre_mem=0,in1	// prefetch src pointer
123	add	dst_pre_mem=0,in0	// prefetch dest pointer
124	;;
125(p7)	mov	ar.lc=cnt	// prefetch count
126(p8)	mov	ar.lc=r0
127(p6)	br.cond.dpnt .long_copy
128	;;
129
130.prefetch:
131	lfetch.fault	  [src_pre_mem], 128
132	lfetch.fault.excl [dst_pre_mem], 128
133	br.cloop.dptk.few .prefetch
134	;;
135
136.medium_copy:
137	and	tmp=31,in2	// copy length after iteration
138	shr.u	r29=in2,5	// number of 32-byte iteration
139	add	dst1=8,dst0	// 2nd dest pointer
140	;;
141	add	cnt=-1,r29	// ctop iteration adjustment
142	cmp.eq	p10,p0=r29,r0	// do we really need to loop?
143	add	src1=8,src0	// 2nd src pointer
144	cmp.le	p6,p0=8,tmp
145	;;
146	cmp.le	p7,p0=16,tmp
147	mov	ar.lc=cnt	// loop setup
148	cmp.eq	p16,p17 = r0,r0
149	mov	ar.ec=2
150(p10)	br.dpnt.few .aligned_src_tail
151	;;
152	TEXT_ALIGN(32)
1531:
154EX(.ex_handler, (p16)	ld8	r34=[src0],16)
155EK(.ex_handler, (p16)	ld8	r38=[src1],16)
156EX(.ex_handler, (p17)	st8	[dst0]=r33,16)
157EK(.ex_handler, (p17)	st8	[dst1]=r37,16)
158	;;
159EX(.ex_handler, (p16)	ld8	r32=[src0],16)
160EK(.ex_handler, (p16)	ld8	r36=[src1],16)
161EX(.ex_handler, (p16)	st8	[dst0]=r34,16)
162EK(.ex_handler, (p16)	st8	[dst1]=r38,16)
163	br.ctop.dptk.few 1b
164	;;
165
166.aligned_src_tail:
167EX(.ex_handler, (p6)	ld8	t1=[src0])
168	mov	ar.lc=saved_lc
169	mov	ar.pfs=saved_pfs
170EX(.ex_hndlr_s, (p7)	ld8	t2=[src1],8)
171	cmp.le	p8,p0=24,tmp
172	and	r21=-8,tmp
173	;;
174EX(.ex_hndlr_s, (p8)	ld8	t3=[src1])
175EX(.ex_handler, (p6)	st8	[dst0]=t1)	// store byte 1
176	and	in2=7,tmp	// remaining length
177EX(.ex_hndlr_d, (p7)	st8	[dst1]=t2,8)	// store byte 2
178	add	src0=src0,r21	// setting up src pointer
179	add	dst0=dst0,r21	// setting up dest pointer
180	;;
181EX(.ex_handler, (p8)	st8	[dst1]=t3)	// store byte 3
182	mov	pr=saved_pr,-1
183	br.dptk.many .memcpy_short
184	;;
185
186/* code taken from copy_page_mck */
187.long_copy:
188	.rotr v[2*PREFETCH_DIST]
189	.rotp p[N]
190
191	mov src_pre_mem = src0
192	mov pr.rot = 0x10000
193	mov ar.ec = 1				// special unrolled loop
194
195	mov dst_pre_mem = dst0
196
197	add src_pre_l2 = 8*8, src0
198	add dst_pre_l2 = 8*8, dst0
199	;;
200	add src0 = 8, src_pre_mem		// first t1 src
201	mov ar.lc = 2*PREFETCH_DIST - 1
202	shr.u cnt=in2,7				// number of lines
203	add src1 = 3*8, src_pre_mem		// first t3 src
204	add dst0 = 8, dst_pre_mem		// first t1 dst
205	add dst1 = 3*8, dst_pre_mem		// first t3 dst
206	;;
207	and tmp=127,in2				// remaining bytes after this block
208	add cnt = -(2*PREFETCH_DIST) - 1, cnt
209	// same as .line_copy loop, but with all predicated-off instructions removed:
210.prefetch_loop:
211EX(.ex_hndlr_lcpy_1, (p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0
212EK(.ex_hndlr_lcpy_1, (p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2
213	br.ctop.sptk .prefetch_loop
214	;;
215	cmp.eq p16, p0 = r0, r0			// reset p16 to 1
216	mov ar.lc = cnt
217	mov ar.ec = N				// # of stages in pipeline
218	;;
219.line_copy:
220EX(.ex_handler,	(p[D])	ld8 t2 = [src0], 3*8)			// M0
221EK(.ex_handler,	(p[D])	ld8 t4 = [src1], 3*8)			// M1
222EX(.ex_handler_lcpy,	(p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2 prefetch dst from memory
223EK(.ex_handler_lcpy,	(p[D])	st8 [dst_pre_l2] = n8, 128)		// M3 prefetch dst from L2
224	;;
225EX(.ex_handler_lcpy,	(p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0 prefetch src from memory
226EK(.ex_handler_lcpy,	(p[C])	ld8 n8 = [src_pre_l2], 128)		// M1 prefetch src from L2
227EX(.ex_handler,	(p[D])	st8 [dst0] =  t1, 8)			// M2
228EK(.ex_handler,	(p[D])	st8 [dst1] =  t3, 8)			// M3
229	;;
230EX(.ex_handler,	(p[D])	ld8  t5 = [src0], 8)
231EK(.ex_handler,	(p[D])	ld8  t7 = [src1], 3*8)
232EX(.ex_handler,	(p[D])	st8 [dst0] =  t2, 3*8)
233EK(.ex_handler,	(p[D])	st8 [dst1] =  t4, 3*8)
234	;;
235EX(.ex_handler,	(p[D])	ld8  t6 = [src0], 3*8)
236EK(.ex_handler,	(p[D])	ld8 t10 = [src1], 8)
237EX(.ex_handler,	(p[D])	st8 [dst0] =  t5, 8)
238EK(.ex_handler,	(p[D])	st8 [dst1] =  t7, 3*8)
239	;;
240EX(.ex_handler,	(p[D])	ld8  t9 = [src0], 3*8)
241EK(.ex_handler,	(p[D])	ld8 t11 = [src1], 3*8)
242EX(.ex_handler,	(p[D])	st8 [dst0] =  t6, 3*8)
243EK(.ex_handler,	(p[D])	st8 [dst1] = t10, 8)
244	;;
245EX(.ex_handler,	(p[D])	ld8 t12 = [src0], 8)
246EK(.ex_handler,	(p[D])	ld8 t14 = [src1], 8)
247EX(.ex_handler,	(p[D])	st8 [dst0] =  t9, 3*8)
248EK(.ex_handler,	(p[D])	st8 [dst1] = t11, 3*8)
249	;;
250EX(.ex_handler,	(p[D])	ld8 t13 = [src0], 4*8)
251EK(.ex_handler,	(p[D])	ld8 t15 = [src1], 4*8)
252EX(.ex_handler,	(p[D])	st8 [dst0] = t12, 8)
253EK(.ex_handler,	(p[D])	st8 [dst1] = t14, 8)
254	;;
255EX(.ex_handler,	(p[C])	ld8  t1 = [src0], 8)
256EK(.ex_handler,	(p[C])	ld8  t3 = [src1], 8)
257EX(.ex_handler,	(p[D])	st8 [dst0] = t13, 4*8)
258EK(.ex_handler,	(p[D])	st8 [dst1] = t15, 4*8)
259	br.ctop.sptk .line_copy
260	;;
261
262	add dst0=-8,dst0
263	add src0=-8,src0
264	mov in2=tmp
265	.restore sp
266	br.sptk.many .medium_copy
267	;;
268
269#define BLOCK_SIZE	128*32
270#define blocksize	r23
271#define curlen		r24
272
273// dest is on 8-byte boundary, src is not. We need to do
274// ld8-ld8, shrp, then st8.  Max 8 byte copy per cycle.
275.unaligned_src:
276	.prologue
277	.save ar.pfs, saved_pfs
278	alloc	saved_pfs=ar.pfs,3,5,0,8
279	.save ar.lc, saved_lc
280	mov	saved_lc=ar.lc
281	.save pr, saved_pr
282	mov	saved_pr=pr
283	.body
284.4k_block:
285	mov	saved_in0=dst0	// need to save all input arguments
286	mov	saved_in2=in2
287	mov	blocksize=BLOCK_SIZE
288	;;
289	cmp.lt	p6,p7=blocksize,in2
290	mov	saved_in1=src0
291	;;
292(p6)	mov	in2=blocksize
293	;;
294	shr.u	r21=in2,7	// this much cache line
295	shr.u	r22=in2,4	// number of 16-byte iteration
296	and	curlen=15,in2	// copy length after iteration
297	and	r30=7,src0	// source alignment
298	;;
299	cmp.lt	p7,p8=1,r21
300	add	cnt=-1,r21
301	;;
302
303	add	src_pre_mem=0,src0	// prefetch src pointer
304	add	dst_pre_mem=0,dst0	// prefetch dest pointer
305	and	src0=-8,src0		// 1st src pointer
306(p7)	mov	ar.lc = cnt
307(p8)	mov	ar.lc = r0
308	;;
309	TEXT_ALIGN(32)
3101:	lfetch.fault	  [src_pre_mem], 128
311	lfetch.fault.excl [dst_pre_mem], 128
312	br.cloop.dptk.few 1b
313	;;
314
315	shladd	dst1=r22,3,dst0	// 2nd dest pointer
316	shladd	src1=r22,3,src0	// 2nd src pointer
317	cmp.eq	p8,p9=r22,r0	// do we really need to loop?
318	cmp.le	p6,p7=8,curlen;	// have at least 8 byte remaining?
319	add	cnt=-1,r22	// ctop iteration adjustment
320	;;
321EX(.ex_handler, (p9)	ld8	r33=[src0],8)	// loop primer
322EK(.ex_handler, (p9)	ld8	r37=[src1],8)
323(p8)	br.dpnt.few .noloop
324	;;
325
326// The jump address is calculated based on src alignment. The COPYU
327// macro below need to confine its size to power of two, so an entry
328// can be caulated using shl instead of an expensive multiply. The
329// size is then hard coded by the following #define to match the
330// actual size.  This make it somewhat tedious when COPYU macro gets
331// changed and this need to be adjusted to match.
332#define LOOP_SIZE 6
3331:
334	mov	r29=ip		// jmp_table thread
335	mov	ar.lc=cnt
336	;;
337	add	r29=.jump_table - 1b - (.jmp1-.jump_table), r29
338	shl	r28=r30, LOOP_SIZE	// jmp_table thread
339	mov	ar.ec=2		// loop setup
340	;;
341	add	r29=r29,r28		// jmp_table thread
342	cmp.eq	p16,p17=r0,r0
343	;;
344	mov	b6=r29			// jmp_table thread
345	;;
346	br.cond.sptk.few b6
347
348// for 8-15 byte case
349// We will skip the loop, but need to replicate the side effect
350// that the loop produces.
351.noloop:
352EX(.ex_handler, (p6)	ld8	r37=[src1],8)
353	add	src0=8,src0
354(p6)	shl	r25=r30,3
355	;;
356EX(.ex_handler, (p6)	ld8	r27=[src1])
357(p6)	shr.u	r28=r37,r25
358(p6)	sub	r26=64,r25
359	;;
360(p6)	shl	r27=r27,r26
361	;;
362(p6)	or	r21=r28,r27
363
364.unaligned_src_tail:
365/* check if we have more than blocksize to copy, if so go back */
366	cmp.gt	p8,p0=saved_in2,blocksize
367	;;
368(p8)	add	dst0=saved_in0,blocksize
369(p8)	add	src0=saved_in1,blocksize
370(p8)	sub	in2=saved_in2,blocksize
371(p8)	br.dpnt	.4k_block
372	;;
373
374/* we have up to 15 byte to copy in the tail.
375 * part of work is already done in the jump table code
376 * we are at the following state.
377 * src side:
378 *
379 *   xxxxxx xx                   <----- r21 has xxxxxxxx already
380 * -------- -------- --------
381 * 0        8        16
382 *          ^
383 *          |
384 *          src1
385 *
386 * dst
387 * -------- -------- --------
388 * ^
389 * |
390 * dst1
391 */
392EX(.ex_handler, (p6)	st8	[dst1]=r21,8)	// more than 8 byte to copy
393(p6)	add	curlen=-8,curlen	// update length
394	mov	ar.pfs=saved_pfs
395	;;
396	mov	ar.lc=saved_lc
397	mov	pr=saved_pr,-1
398	mov	in2=curlen	// remaining length
399	mov	dst0=dst1	// dest pointer
400	add	src0=src1,r30	// forward by src alignment
401	;;
402
403// 7 byte or smaller.
404.memcpy_short:
405	cmp.le	p8,p9   = 1,in2
406	cmp.le	p10,p11 = 2,in2
407	cmp.le	p12,p13 = 3,in2
408	cmp.le	p14,p15 = 4,in2
409	add	src1=1,src0	// second src pointer
410	add	dst1=1,dst0	// second dest pointer
411	;;
412
413EX(.ex_handler_short, (p8)	ld1	t1=[src0],2)
414EK(.ex_handler_short, (p10)	ld1	t2=[src1],2)
415(p9)	br.ret.dpnt rp		// 0 byte copy
416	;;
417
418EX(.ex_handler_short, (p8)	st1	[dst0]=t1,2)
419EK(.ex_handler_short, (p10)	st1	[dst1]=t2,2)
420(p11)	br.ret.dpnt rp		// 1 byte copy
421
422EX(.ex_handler_short, (p12)	ld1	t3=[src0],2)
423EK(.ex_handler_short, (p14)	ld1	t4=[src1],2)
424(p13)	br.ret.dpnt rp		// 2 byte copy
425	;;
426
427	cmp.le	p6,p7   = 5,in2
428	cmp.le	p8,p9   = 6,in2
429	cmp.le	p10,p11 = 7,in2
430
431EX(.ex_handler_short, (p12)	st1	[dst0]=t3,2)
432EK(.ex_handler_short, (p14)	st1	[dst1]=t4,2)
433(p15)	br.ret.dpnt rp		// 3 byte copy
434	;;
435
436EX(.ex_handler_short, (p6)	ld1	t5=[src0],2)
437EK(.ex_handler_short, (p8)	ld1	t6=[src1],2)
438(p7)	br.ret.dpnt rp		// 4 byte copy
439	;;
440
441EX(.ex_handler_short, (p6)	st1	[dst0]=t5,2)
442EK(.ex_handler_short, (p8)	st1	[dst1]=t6,2)
443(p9)	br.ret.dptk rp		// 5 byte copy
444
445EX(.ex_handler_short, (p10)	ld1	t7=[src0],2)
446(p11)	br.ret.dptk rp		// 6 byte copy
447	;;
448
449EX(.ex_handler_short, (p10)	st1	[dst0]=t7,2)
450	br.ret.dptk rp		// done all cases
451
452
453/* Align dest to nearest 8-byte boundary. We know we have at
454 * least 7 bytes to copy, enough to crawl to 8-byte boundary.
455 * Actual number of byte to crawl depend on the dest alignment.
456 * 7 byte or less is taken care at .memcpy_short
457
458 * src0 - source even index
459 * src1 - source  odd index
460 * dst0 - dest even index
461 * dst1 - dest  odd index
462 * r30  - distance to 8-byte boundary
463 */
464
465.align_dest:
466	add	src1=1,in1	// source odd index
467	cmp.le	p7,p0 = 2,r30	// for .align_dest
468	cmp.le	p8,p0 = 3,r30	// for .align_dest
469EX(.ex_handler_short, (p6)	ld1	t1=[src0],2)
470	cmp.le	p9,p0 = 4,r30	// for .align_dest
471	cmp.le	p10,p0 = 5,r30
472	;;
473EX(.ex_handler_short, (p7)	ld1	t2=[src1],2)
474EK(.ex_handler_short, (p8)	ld1	t3=[src0],2)
475	cmp.le	p11,p0 = 6,r30
476EX(.ex_handler_short, (p6)	st1	[dst0] = t1,2)
477	cmp.le	p12,p0 = 7,r30
478	;;
479EX(.ex_handler_short, (p9)	ld1	t4=[src1],2)
480EK(.ex_handler_short, (p10)	ld1	t5=[src0],2)
481EX(.ex_handler_short, (p7)	st1	[dst1] = t2,2)
482EK(.ex_handler_short, (p8)	st1	[dst0] = t3,2)
483	;;
484EX(.ex_handler_short, (p11)	ld1	t6=[src1],2)
485EK(.ex_handler_short, (p12)	ld1	t7=[src0],2)
486	cmp.eq	p6,p7=r28,r29
487EX(.ex_handler_short, (p9)	st1	[dst1] = t4,2)
488EK(.ex_handler_short, (p10)	st1	[dst0] = t5,2)
489	sub	in2=in2,r30
490	;;
491EX(.ex_handler_short, (p11)	st1	[dst1] = t6,2)
492EK(.ex_handler_short, (p12)	st1	[dst0] = t7)
493	add	dst0=in0,r30	// setup arguments
494	add	src0=in1,r30
495(p6)	br.cond.dptk .aligned_src
496(p7)	br.cond.dpnt .unaligned_src
497	;;
498
499/* main loop body in jump table format */
500#define COPYU(shift)									\
5011:											\
502EX(.ex_handler,  (p16)	ld8	r32=[src0],8);		/* 1 */				\
503EK(.ex_handler,  (p16)	ld8	r36=[src1],8);						\
504		 (p17)	shrp	r35=r33,r34,shift;;	/* 1 */				\
505EX(.ex_handler,  (p6)	ld8	r22=[src1]);	/* common, prime for tail section */	\
506		 nop.m	0;								\
507		 (p16)	shrp	r38=r36,r37,shift;					\
508EX(.ex_handler,  (p17)	st8	[dst0]=r35,8);		/* 1 */				\
509EK(.ex_handler,  (p17)	st8	[dst1]=r39,8);						\
510		 br.ctop.dptk.few 1b;;							\
511		 (p7)	add	src1=-8,src1;	/* back out for <8 byte case */		\
512		 shrp	r21=r22,r38,shift;	/* speculative work */			\
513		 br.sptk.few .unaligned_src_tail /* branch out of jump table */		\
514		 ;;
515	TEXT_ALIGN(32)
516.jump_table:
517	COPYU(8)	// unaligned cases
518.jmp1:
519	COPYU(16)
520	COPYU(24)
521	COPYU(32)
522	COPYU(40)
523	COPYU(48)
524	COPYU(56)
525
526#undef A
527#undef B
528#undef C
529#undef D
530
531/*
532 * Due to lack of local tag support in gcc 2.x assembler, it is not clear which
533 * instruction failed in the bundle.  The exception algorithm is that we
534 * first figure out the faulting address, then detect if there is any
535 * progress made on the copy, if so, redo the copy from last known copied
536 * location up to the faulting address (exclusive). In the copy_from_user
537 * case, remaining byte in kernel buffer will be zeroed.
538 *
539 * Take copy_from_user as an example, in the code there are multiple loads
540 * in a bundle and those multiple loads could span over two pages, the
541 * faulting address is calculated as page_round_down(max(src0, src1)).
542 * This is based on knowledge that if we can access one byte in a page, we
543 * can access any byte in that page.
544 *
545 * predicate used in the exception handler:
546 * p6-p7: direction
547 * p10-p11: src faulting addr calculation
548 * p12-p13: dst faulting addr calculation
549 */
550
551#define A	r19
552#define B	r20
553#define C	r21
554#define D	r22
555#define F	r28
556
557#define memset_arg0	r32
558#define memset_arg2	r33
559
560#define saved_retval	loc0
561#define saved_rtlink	loc1
562#define saved_pfs_stack	loc2
563
564.ex_hndlr_s:
565	add	src0=8,src0
566	br.sptk .ex_handler
567	;;
568.ex_hndlr_d:
569	add	dst0=8,dst0
570	br.sptk .ex_handler
571	;;
572.ex_hndlr_lcpy_1:
573	mov	src1=src_pre_mem
574	mov	dst1=dst_pre_mem
575	cmp.gtu	p10,p11=src_pre_mem,saved_in1
576	cmp.gtu	p12,p13=dst_pre_mem,saved_in0
577	;;
578(p10)	add	src0=8,saved_in1
579(p11)	mov	src0=saved_in1
580(p12)	add	dst0=8,saved_in0
581(p13)	mov	dst0=saved_in0
582	br.sptk	.ex_handler
583.ex_handler_lcpy:
584	// in line_copy block, the preload addresses should always ahead
585	// of the other two src/dst pointers.  Furthermore, src1/dst1 should
586	// always ahead of src0/dst0.
587	mov	src1=src_pre_mem
588	mov	dst1=dst_pre_mem
589.ex_handler:
590	mov	pr=saved_pr,-1		// first restore pr, lc, and pfs
591	mov	ar.lc=saved_lc
592	mov	ar.pfs=saved_pfs
593	;;
594.ex_handler_short: // fault occurred in these sections didn't change pr, lc, pfs
595	cmp.ltu	p6,p7=saved_in0, saved_in1	// get the copy direction
596	cmp.ltu	p10,p11=src0,src1
597	cmp.ltu	p12,p13=dst0,dst1
598	fcmp.eq	p8,p0=f6,f0		// is it memcpy?
599	mov	tmp = dst0
600	;;
601(p11)	mov	src1 = src0		// pick the larger of the two
602(p13)	mov	dst0 = dst1		// make dst0 the smaller one
603(p13)	mov	dst1 = tmp		// and dst1 the larger one
604	;;
605(p6)	dep	F = r0,dst1,0,PAGE_SHIFT // usr dst round down to page boundary
606(p7)	dep	F = r0,src1,0,PAGE_SHIFT // usr src round down to page boundary
607	;;
608(p6)	cmp.le	p14,p0=dst0,saved_in0	// no progress has been made on store
609(p7)	cmp.le	p14,p0=src0,saved_in1	// no progress has been made on load
610	mov	retval=saved_in2
611(p8)	ld1	tmp=[src1]		// force an oops for memcpy call
612(p8)	st1	[dst1]=r0		// force an oops for memcpy call
613(p14)	br.ret.sptk.many rp
614
615/*
616 * The remaining byte to copy is calculated as:
617 *
618 * A =	(faulting_addr - orig_src)	-> len to faulting ld address
619 *	or
620 * 	(faulting_addr - orig_dst)	-> len to faulting st address
621 * B =	(cur_dst - orig_dst)		-> len copied so far
622 * C =	A - B				-> len need to be copied
623 * D =	orig_len - A			-> len need to be zeroed
624 */
625(p6)	sub	A = F, saved_in0
626(p7)	sub	A = F, saved_in1
627	clrrrb
628	;;
629	alloc	saved_pfs_stack=ar.pfs,3,3,3,0
630	cmp.lt	p8,p0=A,r0
631	sub	B = dst0, saved_in0	// how many byte copied so far
632	;;
633(p8)	mov	A = 0;			// A shouldn't be negative, cap it
634	;;
635	sub	C = A, B
636	sub	D = saved_in2, A
637	;;
638	cmp.gt	p8,p0=C,r0		// more than 1 byte?
639	add	memset_arg0=saved_in0, A
640(p6)	mov	memset_arg2=0		// copy_to_user should not call memset
641(p7)	mov	memset_arg2=D		// copy_from_user need to have kbuf zeroed
642	mov	r8=0
643	mov	saved_retval = D
644	mov	saved_rtlink = b0
645
646	add	out0=saved_in0, B
647	add	out1=saved_in1, B
648	mov	out2=C
649(p8)	br.call.sptk.few b0=__copy_user	// recursive call
650	;;
651
652	add	saved_retval=saved_retval,r8	// above might return non-zero value
653	cmp.gt	p8,p0=memset_arg2,r0	// more than 1 byte?
654	mov	out0=memset_arg0	// *s
655	mov	out1=r0			// c
656	mov	out2=memset_arg2	// n
657(p8)	br.call.sptk.few b0=memset
658	;;
659
660	mov	retval=saved_retval
661	mov	ar.pfs=saved_pfs_stack
662	mov	b0=saved_rtlink
663	br.ret.sptk.many rp
664
665/* end of McKinley specific optimization */
666END(__copy_user)
667