xref: /openbmc/linux/arch/ia64/lib/memcpy_mck.S (revision 87c2ce3b)
1/*
2 * Itanium 2-optimized version of memcpy and copy_user function
3 *
4 * Inputs:
5 * 	in0:	destination address
6 *	in1:	source address
7 *	in2:	number of bytes to copy
8 * Output:
9 * 	0 if success, or number of byte NOT copied if error occurred.
10 *
11 * Copyright (C) 2002 Intel Corp.
12 * Copyright (C) 2002 Ken Chen <kenneth.w.chen@intel.com>
13 */
14#include <linux/config.h>
15#include <asm/asmmacro.h>
16#include <asm/page.h>
17
18#define EK(y...) EX(y)
19
20/* McKinley specific optimization */
21
22#define retval		r8
23#define saved_pfs	r31
24#define saved_lc	r10
25#define saved_pr	r11
26#define saved_in0	r14
27#define saved_in1	r15
28#define saved_in2	r16
29
30#define src0		r2
31#define src1		r3
32#define dst0		r17
33#define dst1		r18
34#define cnt		r9
35
36/* r19-r30 are temp for each code section */
37#define PREFETCH_DIST	8
38#define src_pre_mem	r19
39#define dst_pre_mem	r20
40#define src_pre_l2	r21
41#define dst_pre_l2	r22
42#define t1		r23
43#define t2		r24
44#define t3		r25
45#define t4		r26
46#define t5		t1	// alias!
47#define t6		t2	// alias!
48#define t7		t3	// alias!
49#define n8		r27
50#define t9		t5	// alias!
51#define t10		t4	// alias!
52#define t11		t7	// alias!
53#define t12		t6	// alias!
54#define t14		t10	// alias!
55#define t13		r28
56#define t15		r29
57#define tmp		r30
58
59/* defines for long_copy block */
60#define	A	0
61#define B	(PREFETCH_DIST)
62#define C	(B + PREFETCH_DIST)
63#define D	(C + 1)
64#define N	(D + 1)
65#define Nrot	((N + 7) & ~7)
66
67/* alias */
68#define in0		r32
69#define in1		r33
70#define in2		r34
71
72GLOBAL_ENTRY(memcpy)
73	and	r28=0x7,in0
74	and	r29=0x7,in1
75	mov	f6=f0
76	br.cond.sptk .common_code
77	;;
78END(memcpy)
79GLOBAL_ENTRY(__copy_user)
80	.prologue
81// check dest alignment
82	and	r28=0x7,in0
83	and	r29=0x7,in1
84	mov	f6=f1
85	mov	saved_in0=in0	// save dest pointer
86	mov	saved_in1=in1	// save src pointer
87	mov	saved_in2=in2	// save len
88	;;
89.common_code:
90	cmp.gt	p15,p0=8,in2	// check for small size
91	cmp.ne	p13,p0=0,r28	// check dest alignment
92	cmp.ne	p14,p0=0,r29	// check src alignment
93	add	src0=0,in1
94	sub	r30=8,r28	// for .align_dest
95	mov	retval=r0	// initialize return value
96	;;
97	add	dst0=0,in0
98	add	dst1=1,in0	// dest odd index
99	cmp.le	p6,p0 = 1,r30	// for .align_dest
100(p15)	br.cond.dpnt .memcpy_short
101(p13)	br.cond.dpnt .align_dest
102(p14)	br.cond.dpnt .unaligned_src
103	;;
104
105// both dest and src are aligned on 8-byte boundary
106.aligned_src:
107	.save ar.pfs, saved_pfs
108	alloc	saved_pfs=ar.pfs,3,Nrot-3,0,Nrot
109	.save pr, saved_pr
110	mov	saved_pr=pr
111
112	shr.u	cnt=in2,7	// this much cache line
113	;;
114	cmp.lt	p6,p0=2*PREFETCH_DIST,cnt
115	cmp.lt	p7,p8=1,cnt
116	.save ar.lc, saved_lc
117	mov	saved_lc=ar.lc
118	.body
119	add	cnt=-1,cnt
120	add	src_pre_mem=0,in1	// prefetch src pointer
121	add	dst_pre_mem=0,in0	// prefetch dest pointer
122	;;
123(p7)	mov	ar.lc=cnt	// prefetch count
124(p8)	mov	ar.lc=r0
125(p6)	br.cond.dpnt .long_copy
126	;;
127
128.prefetch:
129	lfetch.fault	  [src_pre_mem], 128
130	lfetch.fault.excl [dst_pre_mem], 128
131	br.cloop.dptk.few .prefetch
132	;;
133
134.medium_copy:
135	and	tmp=31,in2	// copy length after iteration
136	shr.u	r29=in2,5	// number of 32-byte iteration
137	add	dst1=8,dst0	// 2nd dest pointer
138	;;
139	add	cnt=-1,r29	// ctop iteration adjustment
140	cmp.eq	p10,p0=r29,r0	// do we really need to loop?
141	add	src1=8,src0	// 2nd src pointer
142	cmp.le	p6,p0=8,tmp
143	;;
144	cmp.le	p7,p0=16,tmp
145	mov	ar.lc=cnt	// loop setup
146	cmp.eq	p16,p17 = r0,r0
147	mov	ar.ec=2
148(p10)	br.dpnt.few .aligned_src_tail
149	;;
150	TEXT_ALIGN(32)
1511:
152EX(.ex_handler, (p16)	ld8	r34=[src0],16)
153EK(.ex_handler, (p16)	ld8	r38=[src1],16)
154EX(.ex_handler, (p17)	st8	[dst0]=r33,16)
155EK(.ex_handler, (p17)	st8	[dst1]=r37,16)
156	;;
157EX(.ex_handler, (p16)	ld8	r32=[src0],16)
158EK(.ex_handler, (p16)	ld8	r36=[src1],16)
159EX(.ex_handler, (p16)	st8	[dst0]=r34,16)
160EK(.ex_handler, (p16)	st8	[dst1]=r38,16)
161	br.ctop.dptk.few 1b
162	;;
163
164.aligned_src_tail:
165EX(.ex_handler, (p6)	ld8	t1=[src0])
166	mov	ar.lc=saved_lc
167	mov	ar.pfs=saved_pfs
168EX(.ex_hndlr_s, (p7)	ld8	t2=[src1],8)
169	cmp.le	p8,p0=24,tmp
170	and	r21=-8,tmp
171	;;
172EX(.ex_hndlr_s, (p8)	ld8	t3=[src1])
173EX(.ex_handler, (p6)	st8	[dst0]=t1)	// store byte 1
174	and	in2=7,tmp	// remaining length
175EX(.ex_hndlr_d, (p7)	st8	[dst1]=t2,8)	// store byte 2
176	add	src0=src0,r21	// setting up src pointer
177	add	dst0=dst0,r21	// setting up dest pointer
178	;;
179EX(.ex_handler, (p8)	st8	[dst1]=t3)	// store byte 3
180	mov	pr=saved_pr,-1
181	br.dptk.many .memcpy_short
182	;;
183
184/* code taken from copy_page_mck */
185.long_copy:
186	.rotr v[2*PREFETCH_DIST]
187	.rotp p[N]
188
189	mov src_pre_mem = src0
190	mov pr.rot = 0x10000
191	mov ar.ec = 1				// special unrolled loop
192
193	mov dst_pre_mem = dst0
194
195	add src_pre_l2 = 8*8, src0
196	add dst_pre_l2 = 8*8, dst0
197	;;
198	add src0 = 8, src_pre_mem		// first t1 src
199	mov ar.lc = 2*PREFETCH_DIST - 1
200	shr.u cnt=in2,7				// number of lines
201	add src1 = 3*8, src_pre_mem		// first t3 src
202	add dst0 = 8, dst_pre_mem		// first t1 dst
203	add dst1 = 3*8, dst_pre_mem		// first t3 dst
204	;;
205	and tmp=127,in2				// remaining bytes after this block
206	add cnt = -(2*PREFETCH_DIST) - 1, cnt
207	// same as .line_copy loop, but with all predicated-off instructions removed:
208.prefetch_loop:
209EX(.ex_hndlr_lcpy_1, (p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0
210EK(.ex_hndlr_lcpy_1, (p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2
211	br.ctop.sptk .prefetch_loop
212	;;
213	cmp.eq p16, p0 = r0, r0			// reset p16 to 1
214	mov ar.lc = cnt
215	mov ar.ec = N				// # of stages in pipeline
216	;;
217.line_copy:
218EX(.ex_handler,	(p[D])	ld8 t2 = [src0], 3*8)			// M0
219EK(.ex_handler,	(p[D])	ld8 t4 = [src1], 3*8)			// M1
220EX(.ex_handler_lcpy,	(p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2 prefetch dst from memory
221EK(.ex_handler_lcpy,	(p[D])	st8 [dst_pre_l2] = n8, 128)		// M3 prefetch dst from L2
222	;;
223EX(.ex_handler_lcpy,	(p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0 prefetch src from memory
224EK(.ex_handler_lcpy,	(p[C])	ld8 n8 = [src_pre_l2], 128)		// M1 prefetch src from L2
225EX(.ex_handler,	(p[D])	st8 [dst0] =  t1, 8)			// M2
226EK(.ex_handler,	(p[D])	st8 [dst1] =  t3, 8)			// M3
227	;;
228EX(.ex_handler,	(p[D])	ld8  t5 = [src0], 8)
229EK(.ex_handler,	(p[D])	ld8  t7 = [src1], 3*8)
230EX(.ex_handler,	(p[D])	st8 [dst0] =  t2, 3*8)
231EK(.ex_handler,	(p[D])	st8 [dst1] =  t4, 3*8)
232	;;
233EX(.ex_handler,	(p[D])	ld8  t6 = [src0], 3*8)
234EK(.ex_handler,	(p[D])	ld8 t10 = [src1], 8)
235EX(.ex_handler,	(p[D])	st8 [dst0] =  t5, 8)
236EK(.ex_handler,	(p[D])	st8 [dst1] =  t7, 3*8)
237	;;
238EX(.ex_handler,	(p[D])	ld8  t9 = [src0], 3*8)
239EK(.ex_handler,	(p[D])	ld8 t11 = [src1], 3*8)
240EX(.ex_handler,	(p[D])	st8 [dst0] =  t6, 3*8)
241EK(.ex_handler,	(p[D])	st8 [dst1] = t10, 8)
242	;;
243EX(.ex_handler,	(p[D])	ld8 t12 = [src0], 8)
244EK(.ex_handler,	(p[D])	ld8 t14 = [src1], 8)
245EX(.ex_handler,	(p[D])	st8 [dst0] =  t9, 3*8)
246EK(.ex_handler,	(p[D])	st8 [dst1] = t11, 3*8)
247	;;
248EX(.ex_handler,	(p[D])	ld8 t13 = [src0], 4*8)
249EK(.ex_handler,	(p[D])	ld8 t15 = [src1], 4*8)
250EX(.ex_handler,	(p[D])	st8 [dst0] = t12, 8)
251EK(.ex_handler,	(p[D])	st8 [dst1] = t14, 8)
252	;;
253EX(.ex_handler,	(p[C])	ld8  t1 = [src0], 8)
254EK(.ex_handler,	(p[C])	ld8  t3 = [src1], 8)
255EX(.ex_handler,	(p[D])	st8 [dst0] = t13, 4*8)
256EK(.ex_handler,	(p[D])	st8 [dst1] = t15, 4*8)
257	br.ctop.sptk .line_copy
258	;;
259
260	add dst0=-8,dst0
261	add src0=-8,src0
262	mov in2=tmp
263	.restore sp
264	br.sptk.many .medium_copy
265	;;
266
267#define BLOCK_SIZE	128*32
268#define blocksize	r23
269#define curlen		r24
270
271// dest is on 8-byte boundary, src is not. We need to do
272// ld8-ld8, shrp, then st8.  Max 8 byte copy per cycle.
273.unaligned_src:
274	.prologue
275	.save ar.pfs, saved_pfs
276	alloc	saved_pfs=ar.pfs,3,5,0,8
277	.save ar.lc, saved_lc
278	mov	saved_lc=ar.lc
279	.save pr, saved_pr
280	mov	saved_pr=pr
281	.body
282.4k_block:
283	mov	saved_in0=dst0	// need to save all input arguments
284	mov	saved_in2=in2
285	mov	blocksize=BLOCK_SIZE
286	;;
287	cmp.lt	p6,p7=blocksize,in2
288	mov	saved_in1=src0
289	;;
290(p6)	mov	in2=blocksize
291	;;
292	shr.u	r21=in2,7	// this much cache line
293	shr.u	r22=in2,4	// number of 16-byte iteration
294	and	curlen=15,in2	// copy length after iteration
295	and	r30=7,src0	// source alignment
296	;;
297	cmp.lt	p7,p8=1,r21
298	add	cnt=-1,r21
299	;;
300
301	add	src_pre_mem=0,src0	// prefetch src pointer
302	add	dst_pre_mem=0,dst0	// prefetch dest pointer
303	and	src0=-8,src0		// 1st src pointer
304(p7)	mov	ar.lc = cnt
305(p8)	mov	ar.lc = r0
306	;;
307	TEXT_ALIGN(32)
3081:	lfetch.fault	  [src_pre_mem], 128
309	lfetch.fault.excl [dst_pre_mem], 128
310	br.cloop.dptk.few 1b
311	;;
312
313	shladd	dst1=r22,3,dst0	// 2nd dest pointer
314	shladd	src1=r22,3,src0	// 2nd src pointer
315	cmp.eq	p8,p9=r22,r0	// do we really need to loop?
316	cmp.le	p6,p7=8,curlen;	// have at least 8 byte remaining?
317	add	cnt=-1,r22	// ctop iteration adjustment
318	;;
319EX(.ex_handler, (p9)	ld8	r33=[src0],8)	// loop primer
320EK(.ex_handler, (p9)	ld8	r37=[src1],8)
321(p8)	br.dpnt.few .noloop
322	;;
323
324// The jump address is calculated based on src alignment. The COPYU
325// macro below need to confine its size to power of two, so an entry
326// can be caulated using shl instead of an expensive multiply. The
327// size is then hard coded by the following #define to match the
328// actual size.  This make it somewhat tedious when COPYU macro gets
329// changed and this need to be adjusted to match.
330#define LOOP_SIZE 6
3311:
332	mov	r29=ip		// jmp_table thread
333	mov	ar.lc=cnt
334	;;
335	add	r29=.jump_table - 1b - (.jmp1-.jump_table), r29
336	shl	r28=r30, LOOP_SIZE	// jmp_table thread
337	mov	ar.ec=2		// loop setup
338	;;
339	add	r29=r29,r28		// jmp_table thread
340	cmp.eq	p16,p17=r0,r0
341	;;
342	mov	b6=r29			// jmp_table thread
343	;;
344	br.cond.sptk.few b6
345
346// for 8-15 byte case
347// We will skip the loop, but need to replicate the side effect
348// that the loop produces.
349.noloop:
350EX(.ex_handler, (p6)	ld8	r37=[src1],8)
351	add	src0=8,src0
352(p6)	shl	r25=r30,3
353	;;
354EX(.ex_handler, (p6)	ld8	r27=[src1])
355(p6)	shr.u	r28=r37,r25
356(p6)	sub	r26=64,r25
357	;;
358(p6)	shl	r27=r27,r26
359	;;
360(p6)	or	r21=r28,r27
361
362.unaligned_src_tail:
363/* check if we have more than blocksize to copy, if so go back */
364	cmp.gt	p8,p0=saved_in2,blocksize
365	;;
366(p8)	add	dst0=saved_in0,blocksize
367(p8)	add	src0=saved_in1,blocksize
368(p8)	sub	in2=saved_in2,blocksize
369(p8)	br.dpnt	.4k_block
370	;;
371
372/* we have up to 15 byte to copy in the tail.
373 * part of work is already done in the jump table code
374 * we are at the following state.
375 * src side:
376 *
377 *   xxxxxx xx                   <----- r21 has xxxxxxxx already
378 * -------- -------- --------
379 * 0        8        16
380 *          ^
381 *          |
382 *          src1
383 *
384 * dst
385 * -------- -------- --------
386 * ^
387 * |
388 * dst1
389 */
390EX(.ex_handler, (p6)	st8	[dst1]=r21,8)	// more than 8 byte to copy
391(p6)	add	curlen=-8,curlen	// update length
392	mov	ar.pfs=saved_pfs
393	;;
394	mov	ar.lc=saved_lc
395	mov	pr=saved_pr,-1
396	mov	in2=curlen	// remaining length
397	mov	dst0=dst1	// dest pointer
398	add	src0=src1,r30	// forward by src alignment
399	;;
400
401// 7 byte or smaller.
402.memcpy_short:
403	cmp.le	p8,p9   = 1,in2
404	cmp.le	p10,p11 = 2,in2
405	cmp.le	p12,p13 = 3,in2
406	cmp.le	p14,p15 = 4,in2
407	add	src1=1,src0	// second src pointer
408	add	dst1=1,dst0	// second dest pointer
409	;;
410
411EX(.ex_handler_short, (p8)	ld1	t1=[src0],2)
412EK(.ex_handler_short, (p10)	ld1	t2=[src1],2)
413(p9)	br.ret.dpnt rp		// 0 byte copy
414	;;
415
416EX(.ex_handler_short, (p8)	st1	[dst0]=t1,2)
417EK(.ex_handler_short, (p10)	st1	[dst1]=t2,2)
418(p11)	br.ret.dpnt rp		// 1 byte copy
419
420EX(.ex_handler_short, (p12)	ld1	t3=[src0],2)
421EK(.ex_handler_short, (p14)	ld1	t4=[src1],2)
422(p13)	br.ret.dpnt rp		// 2 byte copy
423	;;
424
425	cmp.le	p6,p7   = 5,in2
426	cmp.le	p8,p9   = 6,in2
427	cmp.le	p10,p11 = 7,in2
428
429EX(.ex_handler_short, (p12)	st1	[dst0]=t3,2)
430EK(.ex_handler_short, (p14)	st1	[dst1]=t4,2)
431(p15)	br.ret.dpnt rp		// 3 byte copy
432	;;
433
434EX(.ex_handler_short, (p6)	ld1	t5=[src0],2)
435EK(.ex_handler_short, (p8)	ld1	t6=[src1],2)
436(p7)	br.ret.dpnt rp		// 4 byte copy
437	;;
438
439EX(.ex_handler_short, (p6)	st1	[dst0]=t5,2)
440EK(.ex_handler_short, (p8)	st1	[dst1]=t6,2)
441(p9)	br.ret.dptk rp		// 5 byte copy
442
443EX(.ex_handler_short, (p10)	ld1	t7=[src0],2)
444(p11)	br.ret.dptk rp		// 6 byte copy
445	;;
446
447EX(.ex_handler_short, (p10)	st1	[dst0]=t7,2)
448	br.ret.dptk rp		// done all cases
449
450
451/* Align dest to nearest 8-byte boundary. We know we have at
452 * least 7 bytes to copy, enough to crawl to 8-byte boundary.
453 * Actual number of byte to crawl depend on the dest alignment.
454 * 7 byte or less is taken care at .memcpy_short
455
456 * src0 - source even index
457 * src1 - source  odd index
458 * dst0 - dest even index
459 * dst1 - dest  odd index
460 * r30  - distance to 8-byte boundary
461 */
462
463.align_dest:
464	add	src1=1,in1	// source odd index
465	cmp.le	p7,p0 = 2,r30	// for .align_dest
466	cmp.le	p8,p0 = 3,r30	// for .align_dest
467EX(.ex_handler_short, (p6)	ld1	t1=[src0],2)
468	cmp.le	p9,p0 = 4,r30	// for .align_dest
469	cmp.le	p10,p0 = 5,r30
470	;;
471EX(.ex_handler_short, (p7)	ld1	t2=[src1],2)
472EK(.ex_handler_short, (p8)	ld1	t3=[src0],2)
473	cmp.le	p11,p0 = 6,r30
474EX(.ex_handler_short, (p6)	st1	[dst0] = t1,2)
475	cmp.le	p12,p0 = 7,r30
476	;;
477EX(.ex_handler_short, (p9)	ld1	t4=[src1],2)
478EK(.ex_handler_short, (p10)	ld1	t5=[src0],2)
479EX(.ex_handler_short, (p7)	st1	[dst1] = t2,2)
480EK(.ex_handler_short, (p8)	st1	[dst0] = t3,2)
481	;;
482EX(.ex_handler_short, (p11)	ld1	t6=[src1],2)
483EK(.ex_handler_short, (p12)	ld1	t7=[src0],2)
484	cmp.eq	p6,p7=r28,r29
485EX(.ex_handler_short, (p9)	st1	[dst1] = t4,2)
486EK(.ex_handler_short, (p10)	st1	[dst0] = t5,2)
487	sub	in2=in2,r30
488	;;
489EX(.ex_handler_short, (p11)	st1	[dst1] = t6,2)
490EK(.ex_handler_short, (p12)	st1	[dst0] = t7)
491	add	dst0=in0,r30	// setup arguments
492	add	src0=in1,r30
493(p6)	br.cond.dptk .aligned_src
494(p7)	br.cond.dpnt .unaligned_src
495	;;
496
497/* main loop body in jump table format */
498#define COPYU(shift)									\
4991:											\
500EX(.ex_handler,  (p16)	ld8	r32=[src0],8);		/* 1 */				\
501EK(.ex_handler,  (p16)	ld8	r36=[src1],8);						\
502		 (p17)	shrp	r35=r33,r34,shift;;	/* 1 */				\
503EX(.ex_handler,  (p6)	ld8	r22=[src1]);	/* common, prime for tail section */	\
504		 nop.m	0;								\
505		 (p16)	shrp	r38=r36,r37,shift;					\
506EX(.ex_handler,  (p17)	st8	[dst0]=r35,8);		/* 1 */				\
507EK(.ex_handler,  (p17)	st8	[dst1]=r39,8);						\
508		 br.ctop.dptk.few 1b;;							\
509		 (p7)	add	src1=-8,src1;	/* back out for <8 byte case */		\
510		 shrp	r21=r22,r38,shift;	/* speculative work */			\
511		 br.sptk.few .unaligned_src_tail /* branch out of jump table */		\
512		 ;;
513	TEXT_ALIGN(32)
514.jump_table:
515	COPYU(8)	// unaligned cases
516.jmp1:
517	COPYU(16)
518	COPYU(24)
519	COPYU(32)
520	COPYU(40)
521	COPYU(48)
522	COPYU(56)
523
524#undef A
525#undef B
526#undef C
527#undef D
528
529/*
530 * Due to lack of local tag support in gcc 2.x assembler, it is not clear which
531 * instruction failed in the bundle.  The exception algorithm is that we
532 * first figure out the faulting address, then detect if there is any
533 * progress made on the copy, if so, redo the copy from last known copied
534 * location up to the faulting address (exclusive). In the copy_from_user
535 * case, remaining byte in kernel buffer will be zeroed.
536 *
537 * Take copy_from_user as an example, in the code there are multiple loads
538 * in a bundle and those multiple loads could span over two pages, the
539 * faulting address is calculated as page_round_down(max(src0, src1)).
540 * This is based on knowledge that if we can access one byte in a page, we
541 * can access any byte in that page.
542 *
543 * predicate used in the exception handler:
544 * p6-p7: direction
545 * p10-p11: src faulting addr calculation
546 * p12-p13: dst faulting addr calculation
547 */
548
549#define A	r19
550#define B	r20
551#define C	r21
552#define D	r22
553#define F	r28
554
555#define memset_arg0	r32
556#define memset_arg2	r33
557
558#define saved_retval	loc0
559#define saved_rtlink	loc1
560#define saved_pfs_stack	loc2
561
562.ex_hndlr_s:
563	add	src0=8,src0
564	br.sptk .ex_handler
565	;;
566.ex_hndlr_d:
567	add	dst0=8,dst0
568	br.sptk .ex_handler
569	;;
570.ex_hndlr_lcpy_1:
571	mov	src1=src_pre_mem
572	mov	dst1=dst_pre_mem
573	cmp.gtu	p10,p11=src_pre_mem,saved_in1
574	cmp.gtu	p12,p13=dst_pre_mem,saved_in0
575	;;
576(p10)	add	src0=8,saved_in1
577(p11)	mov	src0=saved_in1
578(p12)	add	dst0=8,saved_in0
579(p13)	mov	dst0=saved_in0
580	br.sptk	.ex_handler
581.ex_handler_lcpy:
582	// in line_copy block, the preload addresses should always ahead
583	// of the other two src/dst pointers.  Furthermore, src1/dst1 should
584	// always ahead of src0/dst0.
585	mov	src1=src_pre_mem
586	mov	dst1=dst_pre_mem
587.ex_handler:
588	mov	pr=saved_pr,-1		// first restore pr, lc, and pfs
589	mov	ar.lc=saved_lc
590	mov	ar.pfs=saved_pfs
591	;;
592.ex_handler_short: // fault occurred in these sections didn't change pr, lc, pfs
593	cmp.ltu	p6,p7=saved_in0, saved_in1	// get the copy direction
594	cmp.ltu	p10,p11=src0,src1
595	cmp.ltu	p12,p13=dst0,dst1
596	fcmp.eq	p8,p0=f6,f0		// is it memcpy?
597	mov	tmp = dst0
598	;;
599(p11)	mov	src1 = src0		// pick the larger of the two
600(p13)	mov	dst0 = dst1		// make dst0 the smaller one
601(p13)	mov	dst1 = tmp		// and dst1 the larger one
602	;;
603(p6)	dep	F = r0,dst1,0,PAGE_SHIFT // usr dst round down to page boundary
604(p7)	dep	F = r0,src1,0,PAGE_SHIFT // usr src round down to page boundary
605	;;
606(p6)	cmp.le	p14,p0=dst0,saved_in0	// no progress has been made on store
607(p7)	cmp.le	p14,p0=src0,saved_in1	// no progress has been made on load
608	mov	retval=saved_in2
609(p8)	ld1	tmp=[src1]		// force an oops for memcpy call
610(p8)	st1	[dst1]=r0		// force an oops for memcpy call
611(p14)	br.ret.sptk.many rp
612
613/*
614 * The remaining byte to copy is calculated as:
615 *
616 * A =	(faulting_addr - orig_src)	-> len to faulting ld address
617 *	or
618 * 	(faulting_addr - orig_dst)	-> len to faulting st address
619 * B =	(cur_dst - orig_dst)		-> len copied so far
620 * C =	A - B				-> len need to be copied
621 * D =	orig_len - A			-> len need to be zeroed
622 */
623(p6)	sub	A = F, saved_in0
624(p7)	sub	A = F, saved_in1
625	clrrrb
626	;;
627	alloc	saved_pfs_stack=ar.pfs,3,3,3,0
628	cmp.lt	p8,p0=A,r0
629	sub	B = dst0, saved_in0	// how many byte copied so far
630	;;
631(p8)	mov	A = 0;			// A shouldn't be negative, cap it
632	;;
633	sub	C = A, B
634	sub	D = saved_in2, A
635	;;
636	cmp.gt	p8,p0=C,r0		// more than 1 byte?
637	add	memset_arg0=saved_in0, A
638(p6)	mov	memset_arg2=0		// copy_to_user should not call memset
639(p7)	mov	memset_arg2=D		// copy_from_user need to have kbuf zeroed
640	mov	r8=0
641	mov	saved_retval = D
642	mov	saved_rtlink = b0
643
644	add	out0=saved_in0, B
645	add	out1=saved_in1, B
646	mov	out2=C
647(p8)	br.call.sptk.few b0=__copy_user	// recursive call
648	;;
649
650	add	saved_retval=saved_retval,r8	// above might return non-zero value
651	cmp.gt	p8,p0=memset_arg2,r0	// more than 1 byte?
652	mov	out0=memset_arg0	// *s
653	mov	out1=r0			// c
654	mov	out2=memset_arg2	// n
655(p8)	br.call.sptk.few b0=memset
656	;;
657
658	mov	retval=saved_retval
659	mov	ar.pfs=saved_pfs_stack
660	mov	b0=saved_rtlink
661	br.ret.sptk.many rp
662
663/* end of McKinley specific optimization */
664END(__copy_user)
665