xref: /openbmc/linux/arch/ia64/lib/do_csum.S (revision 4f3db074)
1/*
2 *
3 * Optmized version of the standard do_csum() function
4 *
5 * Return: a 64bit quantity containing the 16bit Internet checksum
6 *
7 * Inputs:
8 *	in0: address of buffer to checksum (char *)
9 *	in1: length of the buffer (int)
10 *
11 * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
12 *	Stephane Eranian <eranian@hpl.hp.com>
13 *
14 * 02/04/22	Ken Chen <kenneth.w.chen@intel.com>
15 *		Data locality study on the checksum buffer.
16 *		More optimization cleanup - remove excessive stop bits.
17 * 02/04/08	David Mosberger <davidm@hpl.hp.com>
18 *		More cleanup and tuning.
19 * 01/04/18	Jun Nakajima <jun.nakajima@intel.com>
20 *		Clean up and optimize and the software pipeline, loading two
21 *		back-to-back 8-byte words per loop. Clean up the initialization
22 *		for the loop. Support the cases where load latency = 1 or 2.
23 *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
24 */
25
26#include <asm/asmmacro.h>
27
28//
29// Theory of operations:
30//	The goal is to go as quickly as possible to the point where
31//	we can checksum 16 bytes/loop. Before reaching that point we must
32//	take care of incorrect alignment of first byte.
33//
34//	The code hereafter also takes care of the "tail" part of the buffer
35//	before entering the core loop, if any. The checksum is a sum so it
36//	allows us to commute operations. So we do the "head" and "tail"
37//	first to finish at full speed in the body. Once we get the head and
38//	tail values, we feed them into the pipeline, very handy initialization.
39//
40//	Of course we deal with the special case where the whole buffer fits
41//	into one 8 byte word. In this case we have only one entry in the pipeline.
42//
43//	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
44//	possible load latency and also to accommodate for head and tail.
45//
46//	The end of the function deals with folding the checksum from 64bits
47//	down to 16bits taking care of the carry.
48//
49//	This version avoids synchronization in the core loop by also using a
50//	pipeline for the accumulation of the checksum in resultx[] (x=1,2).
51//
52//	 wordx[] (x=1,2)
53//	|---|
54//      |   | 0			: new value loaded in pipeline
55//	|---|
56//      |   | -			: in transit data
57//	|---|
58//      |   | LOAD_LATENCY	: current value to add to checksum
59//	|---|
60//      |   | LOAD_LATENCY+1	: previous value added to checksum
61//      |---|			(previous iteration)
62//
63//	resultx[] (x=1,2)
64//	|---|
65//      |   | 0			: initial value
66//	|---|
67//      |   | LOAD_LATENCY-1	: new checksum
68//	|---|
69//      |   | LOAD_LATENCY	: previous value of checksum
70//	|---|
71//      |   | LOAD_LATENCY+1	: final checksum when out of the loop
72//      |---|
73//
74//
75//	See RFC1071 "Computing the Internet Checksum" for various techniques for
76//	calculating the Internet checksum.
77//
78// NOT YET DONE:
79//	- Maybe another algorithm which would take care of the folding at the
80//	  end in a different manner
81//	- Work with people more knowledgeable than me on the network stack
82//	  to figure out if we could not split the function depending on the
83//	  type of packet or alignment we get. Like the ip_fast_csum() routine
84//	  where we know we have at least 20bytes worth of data to checksum.
85//	- Do a better job of handling small packets.
86//	- Note on prefetching: it was found that under various load, i.e. ftp read/write,
87//	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
88//	  on the data that buffer points to (partly because the checksum is often preceded by
89//	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
90//	  the data is already in the cache.
91//
92
93#define saved_pfs	r11
94#define hmask		r16
95#define tmask		r17
96#define first1		r18
97#define firstval	r19
98#define firstoff	r20
99#define last		r21
100#define lastval		r22
101#define lastoff		r23
102#define saved_lc	r24
103#define saved_pr	r25
104#define tmp1		r26
105#define tmp2		r27
106#define tmp3		r28
107#define carry1		r29
108#define carry2		r30
109#define first2		r31
110
111#define buf		in0
112#define len		in1
113
114#define LOAD_LATENCY	2	// XXX fix me
115
116#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
117# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
118#endif
119
120#define PIPE_DEPTH			(LOAD_LATENCY+2)
121#define ELD	p[LOAD_LATENCY]		// end of load
122#define ELD_1	p[LOAD_LATENCY+1]	// and next stage
123
124// unsigned long do_csum(unsigned char *buf,long len)
125
126GLOBAL_ENTRY(do_csum)
127	.prologue
128	.save ar.pfs, saved_pfs
129	alloc saved_pfs=ar.pfs,2,16,0,16
130	.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
131	.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
132	mov ret0=r0		// in case we have zero length
133	cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len)
134	;;
135	add tmp1=buf,len	// last byte's address
136	.save pr, saved_pr
137	mov saved_pr=pr		// preserve predicates (rotation)
138(p6)	br.ret.spnt.many rp	// return if zero or negative length
139
140	mov hmask=-1		// initialize head mask
141	tbit.nz p15,p0=buf,0	// is buf an odd address?
142	and first1=-8,buf	// 8-byte align down address of first1 element
143
144	and firstoff=7,buf	// how many bytes off for first1 element
145	mov tmask=-1		// initialize tail mask
146
147	;;
148	adds tmp2=-1,tmp1	// last-1
149	and lastoff=7,tmp1	// how many bytes off for last element
150	;;
151	sub tmp1=8,lastoff	// complement to lastoff
152	and last=-8,tmp2	// address of word containing last byte
153	;;
154	sub tmp3=last,first1	// tmp3=distance from first1 to last
155	.save ar.lc, saved_lc
156	mov saved_lc=ar.lc	// save lc
157	cmp.eq p8,p9=last,first1	// everything fits in one word ?
158
159	ld8 firstval=[first1],8	// load, ahead of time, "first1" word
160	and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0
161	shl tmp2=firstoff,3	// number of bits
162	;;
163(p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed
164	shl tmp1=tmp1,3		// number of bits
165(p9)	adds tmp3=-8,tmp3	// effectively loaded
166	;;
167(p8)	mov lastval=r0		// we don't need lastval if first1==last
168	shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[
169	shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff]
170	;;
171	.body
172#define count tmp3
173
174(p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only
175(p9)	and word2[0]=lastval,tmask	// mask last it as appropriate
176	shr.u count=count,3	// how many 8-byte?
177	;;
178	// If count is odd, finish this 8-byte word so that we can
179	// load two back-to-back 8-byte words per loop thereafter.
180	and word1[0]=firstval,hmask	// and mask it as appropriate
181	tbit.nz p10,p11=count,0		// if (count is odd)
182	;;
183(p8)	mov result1[0]=word1[0]
184(p9)	add result1[0]=word1[0],word2[0]
185	;;
186	cmp.ltu p6,p0=result1[0],word1[0]	// check the carry
187	cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte
188	;;
189(p6)	adds result1[0]=1,result1[0]
190(p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word)
191(p11)	br.cond.dptk .do_csum16		// if (count is even)
192
193	// Here count is odd.
194	ld8 word1[1]=[first1],8		// load an 8-byte word
195	cmp.eq p9,p10=1,count		// if (count == 1)
196	adds count=-1,count		// loaded an 8-byte word
197	;;
198	add result1[0]=result1[0],word1[1]
199	;;
200	cmp.ltu p6,p0=result1[0],word1[1]
201	;;
202(p6)	adds result1[0]=1,result1[0]
203(p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit
204	// Fall through to calculate the checksum, feeding result1[0] as
205	// the initial value in result1[0].
206	//
207	// Calculate the checksum loading two 8-byte words per loop.
208	//
209.do_csum16:
210	add first2=8,first1
211	shr.u count=count,1	// we do 16 bytes per loop
212	;;
213	adds count=-1,count
214	mov carry1=r0
215	mov carry2=r0
216	brp.loop.imp 1f,2f
217	;;
218	mov ar.ec=PIPE_DEPTH
219	mov ar.lc=count	// set lc
220	mov pr.rot=1<<16
221	// result1[0] must be initialized in advance.
222	mov result2[0]=r0
223	;;
224	.align 32
2251:
226(ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
227(pC1[1])adds carry1=1,carry1
228(ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
229(pC2[1])adds carry2=1,carry2
230(ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
231(ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
2322:
233(p[0])	ld8 word1[0]=[first1],16
234(p[0])	ld8 word2[0]=[first2],16
235	br.ctop.sptk 1b
236	;;
237	// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
238(pC1[1])adds carry1=1,carry1	// since we miss the last one
239(pC2[1])adds carry2=1,carry2
240	;;
241	add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
242	add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
243	;;
244	cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
245	cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
246	;;
247(p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
248(p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
249	;;
250	add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
251	;;
252	cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
253	;;
254(p6)	adds result1[0]=1,result1[0]
255	;;
256.do_csum_exit:
257	//
258	// now fold 64 into 16 bits taking care of carry
259	// that's not very good because it has lots of sequentiality
260	//
261	mov tmp3=0xffff
262	zxt4 tmp1=result1[0]
263	shr.u tmp2=result1[0],32
264	;;
265	add result1[0]=tmp1,tmp2
266	;;
267	and tmp1=result1[0],tmp3
268	shr.u tmp2=result1[0],16
269	;;
270	add result1[0]=tmp1,tmp2
271	;;
272	and tmp1=result1[0],tmp3
273	shr.u tmp2=result1[0],16
274	;;
275	add result1[0]=tmp1,tmp2
276	;;
277	and tmp1=result1[0],tmp3
278	shr.u tmp2=result1[0],16
279	;;
280	add ret0=tmp1,tmp2
281	mov pr=saved_pr,0xffffffffffff0000
282	;;
283	// if buf was odd then swap bytes
284	mov ar.pfs=saved_pfs		// restore ar.ec
285(p15)	mux1 ret0=ret0,@rev		// reverse word
286	;;
287	mov ar.lc=saved_lc
288(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
289	br.ret.sptk.many rp
290
291//	I (Jun Nakajima) wrote an equivalent code (see below), but it was
292//	not much better than the original. So keep the original there so that
293//	someone else can challenge.
294//
295//	shr.u word1[0]=result1[0],32
296//	zxt4 result1[0]=result1[0]
297//	;;
298//	add result1[0]=result1[0],word1[0]
299//	;;
300//	zxt2 result2[0]=result1[0]
301//	extr.u word1[0]=result1[0],16,16
302//	shr.u carry1=result1[0],32
303//	;;
304//	add result2[0]=result2[0],word1[0]
305//	;;
306//	add result2[0]=result2[0],carry1
307//	;;
308//	extr.u ret0=result2[0],16,16
309//	;;
310//	add ret0=ret0,result2[0]
311//	;;
312//	zxt2 ret0=ret0
313//	mov ar.pfs=saved_pfs		 // restore ar.ec
314//	mov pr=saved_pr,0xffffffffffff0000
315//	;;
316//	// if buf was odd then swap bytes
317//	mov ar.lc=saved_lc
318//(p15)	mux1 ret0=ret0,@rev		// reverse word
319//	;;
320//(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
321//	br.ret.sptk.many rp
322
323END(do_csum)
324