xref: /openbmc/linux/arch/ia64/lib/do_csum.S (revision 2fa5ebe3bc4e31e07a99196455498472417842f2)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *
4 * Optmized version of the standard do_csum() function
5 *
6 * Return: a 64bit quantity containing the 16bit Internet checksum
7 *
8 * Inputs:
9 *	in0: address of buffer to checksum (char *)
10 *	in1: length of the buffer (int)
11 *
12 * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
13 *	Stephane Eranian <eranian@hpl.hp.com>
14 *
15 * 02/04/22	Ken Chen <kenneth.w.chen@intel.com>
16 *		Data locality study on the checksum buffer.
17 *		More optimization cleanup - remove excessive stop bits.
18 * 02/04/08	David Mosberger <davidm@hpl.hp.com>
19 *		More cleanup and tuning.
20 * 01/04/18	Jun Nakajima <jun.nakajima@intel.com>
21 *		Clean up and optimize and the software pipeline, loading two
22 *		back-to-back 8-byte words per loop. Clean up the initialization
23 *		for the loop. Support the cases where load latency = 1 or 2.
24 *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
25 */
26
27#include <asm/asmmacro.h>
28
29//
30// Theory of operations:
31//	The goal is to go as quickly as possible to the point where
32//	we can checksum 16 bytes/loop. Before reaching that point we must
33//	take care of incorrect alignment of first byte.
34//
35//	The code hereafter also takes care of the "tail" part of the buffer
36//	before entering the core loop, if any. The checksum is a sum so it
37//	allows us to commute operations. So we do the "head" and "tail"
38//	first to finish at full speed in the body. Once we get the head and
39//	tail values, we feed them into the pipeline, very handy initialization.
40//
41//	Of course we deal with the special case where the whole buffer fits
42//	into one 8 byte word. In this case we have only one entry in the pipeline.
43//
44//	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
45//	possible load latency and also to accommodate for head and tail.
46//
47//	The end of the function deals with folding the checksum from 64bits
48//	down to 16bits taking care of the carry.
49//
50//	This version avoids synchronization in the core loop by also using a
51//	pipeline for the accumulation of the checksum in resultx[] (x=1,2).
52//
53//	 wordx[] (x=1,2)
54//	|---|
55//      |   | 0			: new value loaded in pipeline
56//	|---|
57//      |   | -			: in transit data
58//	|---|
59//      |   | LOAD_LATENCY	: current value to add to checksum
60//	|---|
61//      |   | LOAD_LATENCY+1	: previous value added to checksum
62//      |---|			(previous iteration)
63//
64//	resultx[] (x=1,2)
65//	|---|
66//      |   | 0			: initial value
67//	|---|
68//      |   | LOAD_LATENCY-1	: new checksum
69//	|---|
70//      |   | LOAD_LATENCY	: previous value of checksum
71//	|---|
72//      |   | LOAD_LATENCY+1	: final checksum when out of the loop
73//      |---|
74//
75//
76//	See RFC1071 "Computing the Internet Checksum" for various techniques for
77//	calculating the Internet checksum.
78//
79// NOT YET DONE:
80//	- Maybe another algorithm which would take care of the folding at the
81//	  end in a different manner
82//	- Work with people more knowledgeable than me on the network stack
83//	  to figure out if we could not split the function depending on the
84//	  type of packet or alignment we get. Like the ip_fast_csum() routine
85//	  where we know we have at least 20bytes worth of data to checksum.
86//	- Do a better job of handling small packets.
87//	- Note on prefetching: it was found that under various load, i.e. ftp read/write,
88//	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
89//	  on the data that buffer points to (partly because the checksum is often preceded by
90//	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
91//	  the data is already in the cache.
92//
93
94#define saved_pfs	r11
95#define hmask		r16
96#define tmask		r17
97#define first1		r18
98#define firstval	r19
99#define firstoff	r20
100#define last		r21
101#define lastval		r22
102#define lastoff		r23
103#define saved_lc	r24
104#define saved_pr	r25
105#define tmp1		r26
106#define tmp2		r27
107#define tmp3		r28
108#define carry1		r29
109#define carry2		r30
110#define first2		r31
111
112#define buf		in0
113#define len		in1
114
115#define LOAD_LATENCY	2	// XXX fix me
116
117#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
118# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
119#endif
120
121#define PIPE_DEPTH			(LOAD_LATENCY+2)
122#define ELD	p[LOAD_LATENCY]		// end of load
123#define ELD_1	p[LOAD_LATENCY+1]	// and next stage
124
125// unsigned long do_csum(unsigned char *buf,long len)
126
127GLOBAL_ENTRY(do_csum)
128	.prologue
129	.save ar.pfs, saved_pfs
130	alloc saved_pfs=ar.pfs,2,16,0,16
131	.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
132	.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
133	mov ret0=r0		// in case we have zero length
134	cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len)
135	;;
136	add tmp1=buf,len	// last byte's address
137	.save pr, saved_pr
138	mov saved_pr=pr		// preserve predicates (rotation)
139(p6)	br.ret.spnt.many rp	// return if zero or negative length
140
141	mov hmask=-1		// initialize head mask
142	tbit.nz p15,p0=buf,0	// is buf an odd address?
143	and first1=-8,buf	// 8-byte align down address of first1 element
144
145	and firstoff=7,buf	// how many bytes off for first1 element
146	mov tmask=-1		// initialize tail mask
147
148	;;
149	adds tmp2=-1,tmp1	// last-1
150	and lastoff=7,tmp1	// how many bytes off for last element
151	;;
152	sub tmp1=8,lastoff	// complement to lastoff
153	and last=-8,tmp2	// address of word containing last byte
154	;;
155	sub tmp3=last,first1	// tmp3=distance from first1 to last
156	.save ar.lc, saved_lc
157	mov saved_lc=ar.lc	// save lc
158	cmp.eq p8,p9=last,first1	// everything fits in one word ?
159
160	ld8 firstval=[first1],8	// load, ahead of time, "first1" word
161	and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0
162	shl tmp2=firstoff,3	// number of bits
163	;;
164(p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed
165	shl tmp1=tmp1,3		// number of bits
166(p9)	adds tmp3=-8,tmp3	// effectively loaded
167	;;
168(p8)	mov lastval=r0		// we don't need lastval if first1==last
169	shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[
170	shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff]
171	;;
172	.body
173#define count tmp3
174
175(p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only
176(p9)	and word2[0]=lastval,tmask	// mask last it as appropriate
177	shr.u count=count,3	// how many 8-byte?
178	;;
179	// If count is odd, finish this 8-byte word so that we can
180	// load two back-to-back 8-byte words per loop thereafter.
181	and word1[0]=firstval,hmask	// and mask it as appropriate
182	tbit.nz p10,p11=count,0		// if (count is odd)
183	;;
184(p8)	mov result1[0]=word1[0]
185(p9)	add result1[0]=word1[0],word2[0]
186	;;
187	cmp.ltu p6,p0=result1[0],word1[0]	// check the carry
188	cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte
189	;;
190(p6)	adds result1[0]=1,result1[0]
191(p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word)
192(p11)	br.cond.dptk .do_csum16		// if (count is even)
193
194	// Here count is odd.
195	ld8 word1[1]=[first1],8		// load an 8-byte word
196	cmp.eq p9,p10=1,count		// if (count == 1)
197	adds count=-1,count		// loaded an 8-byte word
198	;;
199	add result1[0]=result1[0],word1[1]
200	;;
201	cmp.ltu p6,p0=result1[0],word1[1]
202	;;
203(p6)	adds result1[0]=1,result1[0]
204(p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit
205	// Fall through to calculate the checksum, feeding result1[0] as
206	// the initial value in result1[0].
207	//
208	// Calculate the checksum loading two 8-byte words per loop.
209	//
210.do_csum16:
211	add first2=8,first1
212	shr.u count=count,1	// we do 16 bytes per loop
213	;;
214	adds count=-1,count
215	mov carry1=r0
216	mov carry2=r0
217	brp.loop.imp 1f,2f
218	;;
219	mov ar.ec=PIPE_DEPTH
220	mov ar.lc=count	// set lc
221	mov pr.rot=1<<16
222	// result1[0] must be initialized in advance.
223	mov result2[0]=r0
224	;;
225	.align 32
2261:
227(ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
228(pC1[1])adds carry1=1,carry1
229(ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
230(pC2[1])adds carry2=1,carry2
231(ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
232(ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
2332:
234(p[0])	ld8 word1[0]=[first1],16
235(p[0])	ld8 word2[0]=[first2],16
236	br.ctop.sptk 1b
237	;;
238	// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
239(pC1[1])adds carry1=1,carry1	// since we miss the last one
240(pC2[1])adds carry2=1,carry2
241	;;
242	add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
243	add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
244	;;
245	cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
246	cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
247	;;
248(p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
249(p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
250	;;
251	add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
252	;;
253	cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
254	;;
255(p6)	adds result1[0]=1,result1[0]
256	;;
257.do_csum_exit:
258	//
259	// now fold 64 into 16 bits taking care of carry
260	// that's not very good because it has lots of sequentiality
261	//
262	mov tmp3=0xffff
263	zxt4 tmp1=result1[0]
264	shr.u tmp2=result1[0],32
265	;;
266	add result1[0]=tmp1,tmp2
267	;;
268	and tmp1=result1[0],tmp3
269	shr.u tmp2=result1[0],16
270	;;
271	add result1[0]=tmp1,tmp2
272	;;
273	and tmp1=result1[0],tmp3
274	shr.u tmp2=result1[0],16
275	;;
276	add result1[0]=tmp1,tmp2
277	;;
278	and tmp1=result1[0],tmp3
279	shr.u tmp2=result1[0],16
280	;;
281	add ret0=tmp1,tmp2
282	mov pr=saved_pr,0xffffffffffff0000
283	;;
284	// if buf was odd then swap bytes
285	mov ar.pfs=saved_pfs		// restore ar.ec
286(p15)	mux1 ret0=ret0,@rev		// reverse word
287	;;
288	mov ar.lc=saved_lc
289(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
290	br.ret.sptk.many rp
291
292//	I (Jun Nakajima) wrote an equivalent code (see below), but it was
293//	not much better than the original. So keep the original there so that
294//	someone else can challenge.
295//
296//	shr.u word1[0]=result1[0],32
297//	zxt4 result1[0]=result1[0]
298//	;;
299//	add result1[0]=result1[0],word1[0]
300//	;;
301//	zxt2 result2[0]=result1[0]
302//	extr.u word1[0]=result1[0],16,16
303//	shr.u carry1=result1[0],32
304//	;;
305//	add result2[0]=result2[0],word1[0]
306//	;;
307//	add result2[0]=result2[0],carry1
308//	;;
309//	extr.u ret0=result2[0],16,16
310//	;;
311//	add ret0=ret0,result2[0]
312//	;;
313//	zxt2 ret0=ret0
314//	mov ar.pfs=saved_pfs		 // restore ar.ec
315//	mov pr=saved_pr,0xffffffffffff0000
316//	;;
317//	// if buf was odd then swap bytes
318//	mov ar.lc=saved_lc
319//(p15)	mux1 ret0=ret0,@rev		// reverse word
320//	;;
321//(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
322//	br.ret.sptk.many rp
323
324END(do_csum)
325