xref: /openbmc/linux/arch/ia64/lib/copy_user.S (revision 1c2dd16a)
1/*
2 *
3 * Optimized version of the copy_user() routine.
4 * It is used to copy date across the kernel/user boundary.
5 *
6 * The source and destination are always on opposite side of
7 * the boundary. When reading from user space we must catch
8 * faults on loads. When writing to user space we must catch
9 * errors on stores. Note that because of the nature of the copy
10 * we don't need to worry about overlapping regions.
11 *
12 *
13 * Inputs:
14 *	in0	address of source buffer
15 *	in1	address of destination buffer
16 *	in2	number of bytes to copy
17 *
18 * Outputs:
19 *	ret0	0 in case of success. The number of bytes NOT copied in
20 *		case of error.
21 *
22 * Copyright (C) 2000-2001 Hewlett-Packard Co
23 *	Stephane Eranian <eranian@hpl.hp.com>
24 *
25 * Fixme:
26 *	- handle the case where we have more than 16 bytes and the alignment
27 *	  are different.
28 *	- more benchmarking
29 *	- fix extraneous stop bit introduced by the EX() macro.
30 */
31
32#include <asm/asmmacro.h>
33#include <asm/export.h>
34
35//
36// Tuneable parameters
37//
38#define COPY_BREAK	16	// we do byte copy below (must be >=16)
39#define PIPE_DEPTH	21	// pipe depth
40
41#define EPI		p[PIPE_DEPTH-1]
42
43//
44// arguments
45//
46#define dst		in0
47#define src		in1
48#define len		in2
49
50//
51// local registers
52//
53#define t1		r2	// rshift in bytes
54#define t2		r3	// lshift in bytes
55#define rshift		r14	// right shift in bits
56#define lshift		r15	// left shift in bits
57#define word1		r16
58#define word2		r17
59#define cnt		r18
60#define len2		r19
61#define saved_lc	r20
62#define saved_pr	r21
63#define tmp		r22
64#define val		r23
65#define src1		r24
66#define dst1		r25
67#define src2		r26
68#define dst2		r27
69#define len1		r28
70#define enddst		r29
71#define endsrc		r30
72#define saved_pfs	r31
73
74GLOBAL_ENTRY(__copy_user)
75	.prologue
76	.save ar.pfs, saved_pfs
77	alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
78
79	.rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
80	.rotp p[PIPE_DEPTH]
81
82	adds len2=-1,len	// br.ctop is repeat/until
83	mov ret0=r0
84
85	;;			// RAW of cfm when len=0
86	cmp.eq p8,p0=r0,len	// check for zero length
87	.save ar.lc, saved_lc
88	mov saved_lc=ar.lc	// preserve ar.lc (slow)
89(p8)	br.ret.spnt.many rp	// empty mempcy()
90	;;
91	add enddst=dst,len	// first byte after end of source
92	add endsrc=src,len	// first byte after end of destination
93	.save pr, saved_pr
94	mov saved_pr=pr		// preserve predicates
95
96	.body
97
98	mov dst1=dst		// copy because of rotation
99	mov ar.ec=PIPE_DEPTH
100	mov pr.rot=1<<16	// p16=true all others are false
101
102	mov src1=src		// copy because of rotation
103	mov ar.lc=len2		// initialize lc for small count
104	cmp.lt p10,p7=COPY_BREAK,len	// if len > COPY_BREAK then long copy
105
106	xor tmp=src,dst		// same alignment test prepare
107(p10)	br.cond.dptk .long_copy_user
108	;;			// RAW pr.rot/p16 ?
109	//
110	// Now we do the byte by byte loop with software pipeline
111	//
112	// p7 is necessarily false by now
1131:
114	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
115	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
116	br.ctop.dptk.few 1b
117	;;
118	mov ar.lc=saved_lc
119	mov pr=saved_pr,0xffffffffffff0000
120	mov ar.pfs=saved_pfs		// restore ar.ec
121	br.ret.sptk.many rp		// end of short memcpy
122
123	//
124	// Not 8-byte aligned
125	//
126.diff_align_copy_user:
127	// At this point we know we have more than 16 bytes to copy
128	// and also that src and dest do _not_ have the same alignment.
129	and src2=0x7,src1				// src offset
130	and dst2=0x7,dst1				// dst offset
131	;;
132	// The basic idea is that we copy byte-by-byte at the head so
133	// that we can reach 8-byte alignment for both src1 and dst1.
134	// Then copy the body using software pipelined 8-byte copy,
135	// shifting the two back-to-back words right and left, then copy
136	// the tail by copying byte-by-byte.
137	//
138	// Fault handling. If the byte-by-byte at the head fails on the
139	// load, then restart and finish the pipleline by copying zeros
140	// to the dst1. Then copy zeros for the rest of dst1.
141	// If 8-byte software pipeline fails on the load, do the same as
142	// failure_in3 does. If the byte-by-byte at the tail fails, it is
143	// handled simply by failure_in_pipe1.
144	//
145	// The case p14 represents the source has more bytes in the
146	// the first word (by the shifted part), whereas the p15 needs to
147	// copy some bytes from the 2nd word of the source that has the
148	// tail of the 1st of the destination.
149	//
150
151	//
152	// Optimization. If dst1 is 8-byte aligned (quite common), we don't need
153	// to copy the head to dst1, to start 8-byte copy software pipeline.
154	// We know src1 is not 8-byte aligned in this case.
155	//
156	cmp.eq p14,p15=r0,dst2
157(p15)	br.cond.spnt 1f
158	;;
159	sub t1=8,src2
160	mov t2=src2
161	;;
162	shl rshift=t2,3
163	sub len1=len,t1					// set len1
164	;;
165	sub lshift=64,rshift
166	;;
167	br.cond.spnt .word_copy_user
168	;;
1691:
170	cmp.leu	p14,p15=src2,dst2
171	sub t1=dst2,src2
172	;;
173	.pred.rel "mutex", p14, p15
174(p14)	sub word1=8,src2				// (8 - src offset)
175(p15)	sub t1=r0,t1					// absolute value
176(p15)	sub word1=8,dst2				// (8 - dst offset)
177	;;
178	// For the case p14, we don't need to copy the shifted part to
179	// the 1st word of destination.
180	sub t2=8,t1
181(p14)	sub word1=word1,t1
182	;;
183	sub len1=len,word1				// resulting len
184(p15)	shl rshift=t1,3					// in bits
185(p14)	shl rshift=t2,3
186	;;
187(p14)	sub len1=len1,t1
188	adds cnt=-1,word1
189	;;
190	sub lshift=64,rshift
191	mov ar.ec=PIPE_DEPTH
192	mov pr.rot=1<<16	// p16=true all others are false
193	mov ar.lc=cnt
194	;;
1952:
196	EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1)
197	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
198	br.ctop.dptk.few 2b
199	;;
200	clrrrb
201	;;
202.word_copy_user:
203	cmp.gtu p9,p0=16,len1
204(p9)	br.cond.spnt 4f			// if (16 > len1) skip 8-byte copy
205	;;
206	shr.u cnt=len1,3		// number of 64-bit words
207	;;
208	adds cnt=-1,cnt
209	;;
210	.pred.rel "mutex", p14, p15
211(p14)	sub src1=src1,t2
212(p15)	sub src1=src1,t1
213	//
214	// Now both src1 and dst1 point to an 8-byte aligned address. And
215	// we have more than 8 bytes to copy.
216	//
217	mov ar.lc=cnt
218	mov ar.ec=PIPE_DEPTH
219	mov pr.rot=1<<16	// p16=true all others are false
220	;;
2213:
222	//
223	// The pipleline consists of 3 stages:
224	// 1 (p16):	Load a word from src1
225	// 2 (EPI_1):	Shift right pair, saving to tmp
226	// 3 (EPI):	Store tmp to dst1
227	//
228	// To make it simple, use at least 2 (p16) loops to set up val1[n]
229	// because we need 2 back-to-back val1[] to get tmp.
230	// Note that this implies EPI_2 must be p18 or greater.
231	//
232
233#define EPI_1		p[PIPE_DEPTH-2]
234#define SWITCH(pred, shift)	cmp.eq pred,p0=shift,rshift
235#define CASE(pred, shift)	\
236	(pred)	br.cond.spnt .copy_user_bit##shift
237#define BODY(rshift)						\
238.copy_user_bit##rshift:						\
2391:								\
240	EX(.failure_out,(EPI) st8 [dst1]=tmp,8);		\
241(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
242	EX(3f,(p16) ld8 val1[1]=[src1],8);			\
243(p16)	mov val1[0]=r0;						\
244	br.ctop.dptk 1b;					\
245	;;							\
246	br.cond.sptk.many .diff_align_do_tail;			\
2472:								\
248(EPI)	st8 [dst1]=tmp,8;					\
249(EPI_1)	shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
2503:								\
251(p16)	mov val1[1]=r0;						\
252(p16)	mov val1[0]=r0;						\
253	br.ctop.dptk 2b;					\
254	;;							\
255	br.cond.sptk.many .failure_in2
256
257	//
258	// Since the instruction 'shrp' requires a fixed 128-bit value
259	// specifying the bits to shift, we need to provide 7 cases
260	// below.
261	//
262	SWITCH(p6, 8)
263	SWITCH(p7, 16)
264	SWITCH(p8, 24)
265	SWITCH(p9, 32)
266	SWITCH(p10, 40)
267	SWITCH(p11, 48)
268	SWITCH(p12, 56)
269	;;
270	CASE(p6, 8)
271	CASE(p7, 16)
272	CASE(p8, 24)
273	CASE(p9, 32)
274	CASE(p10, 40)
275	CASE(p11, 48)
276	CASE(p12, 56)
277	;;
278	BODY(8)
279	BODY(16)
280	BODY(24)
281	BODY(32)
282	BODY(40)
283	BODY(48)
284	BODY(56)
285	;;
286.diff_align_do_tail:
287	.pred.rel "mutex", p14, p15
288(p14)	sub src1=src1,t1
289(p14)	adds dst1=-8,dst1
290(p15)	sub dst1=dst1,t1
291	;;
2924:
293	// Tail correction.
294	//
295	// The problem with this piplelined loop is that the last word is not
296	// loaded and thus parf of the last word written is not correct.
297	// To fix that, we simply copy the tail byte by byte.
298
299	sub len1=endsrc,src1,1
300	clrrrb
301	;;
302	mov ar.ec=PIPE_DEPTH
303	mov pr.rot=1<<16	// p16=true all others are false
304	mov ar.lc=len1
305	;;
3065:
307	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
308	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
309	br.ctop.dptk.few 5b
310	;;
311	mov ar.lc=saved_lc
312	mov pr=saved_pr,0xffffffffffff0000
313	mov ar.pfs=saved_pfs
314	br.ret.sptk.many rp
315
316	//
317	// Beginning of long mempcy (i.e. > 16 bytes)
318	//
319.long_copy_user:
320	tbit.nz p6,p7=src1,0	// odd alignment
321	and tmp=7,tmp
322	;;
323	cmp.eq p10,p8=r0,tmp
324	mov len1=len		// copy because of rotation
325(p8)	br.cond.dpnt .diff_align_copy_user
326	;;
327	// At this point we know we have more than 16 bytes to copy
328	// and also that both src and dest have the same alignment
329	// which may not be the one we want. So for now we must move
330	// forward slowly until we reach 16byte alignment: no need to
331	// worry about reaching the end of buffer.
332	//
333	EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)	// 1-byte aligned
334(p6)	adds len1=-1,len1;;
335	tbit.nz p7,p0=src1,1
336	;;
337	EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)	// 2-byte aligned
338(p7)	adds len1=-2,len1;;
339	tbit.nz p8,p0=src1,2
340	;;
341	//
342	// Stop bit not required after ld4 because if we fail on ld4
343	// we have never executed the ld1, therefore st1 is not executed.
344	//
345	EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)	// 4-byte aligned
346	;;
347	EX(.failure_out,(p6) st1 [dst1]=val1[0],1)
348	tbit.nz p9,p0=src1,3
349	;;
350	//
351	// Stop bit not required after ld8 because if we fail on ld8
352	// we have never executed the ld2, therefore st2 is not executed.
353	//
354	EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)	// 8-byte aligned
355	EX(.failure_out,(p7) st2 [dst1]=val1[1],2)
356(p8)	adds len1=-4,len1
357	;;
358	EX(.failure_out, (p8) st4 [dst1]=val2[0],4)
359(p9)	adds len1=-8,len1;;
360	shr.u cnt=len1,4		// number of 128-bit (2x64bit) words
361	;;
362	EX(.failure_out, (p9) st8 [dst1]=val2[1],8)
363	tbit.nz p6,p0=len1,3
364	cmp.eq p7,p0=r0,cnt
365	adds tmp=-1,cnt			// br.ctop is repeat/until
366(p7)	br.cond.dpnt .dotail		// we have less than 16 bytes left
367	;;
368	adds src2=8,src1
369	adds dst2=8,dst1
370	mov ar.lc=tmp
371	;;
372	//
373	// 16bytes/iteration
374	//
3752:
376	EX(.failure_in3,(p16) ld8 val1[0]=[src1],16)
377(p16)	ld8 val2[0]=[src2],16
378
379	EX(.failure_out, (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16)
380(EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
381	br.ctop.dptk 2b
382	;;			// RAW on src1 when fall through from loop
383	//
384	// Tail correction based on len only
385	//
386	// No matter where we come from (loop or test) the src1 pointer
387	// is 16 byte aligned AND we have less than 16 bytes to copy.
388	//
389.dotail:
390	EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)	// at least 8 bytes
391	tbit.nz p7,p0=len1,2
392	;;
393	EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)	// at least 4 bytes
394	tbit.nz p8,p0=len1,1
395	;;
396	EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)	// at least 2 bytes
397	tbit.nz p9,p0=len1,0
398	;;
399	EX(.failure_out, (p6) st8 [dst1]=val1[0],8)
400	;;
401	EX(.failure_in1,(p9) ld1 val2[1]=[src1])	// only 1 byte left
402	mov ar.lc=saved_lc
403	;;
404	EX(.failure_out,(p7) st4 [dst1]=val1[1],4)
405	mov pr=saved_pr,0xffffffffffff0000
406	;;
407	EX(.failure_out, (p8)	st2 [dst1]=val2[0],2)
408	mov ar.pfs=saved_pfs
409	;;
410	EX(.failure_out, (p9)	st1 [dst1]=val2[1])
411	br.ret.sptk.many rp
412
413
414	//
415	// Here we handle the case where the byte by byte copy fails
416	// on the load.
417	// Several factors make the zeroing of the rest of the buffer kind of
418	// tricky:
419	//	- the pipeline: loads/stores are not in sync (pipeline)
420	//
421	//	  In the same loop iteration, the dst1 pointer does not directly
422	//	  reflect where the faulty load was.
423	//
424	//	- pipeline effect
425	//	  When you get a fault on load, you may have valid data from
426	//	  previous loads not yet store in transit. Such data must be
427	//	  store normally before moving onto zeroing the rest.
428	//
429	//	- single/multi dispersal independence.
430	//
431	// solution:
432	//	- we don't disrupt the pipeline, i.e. data in transit in
433	//	  the software pipeline will be eventually move to memory.
434	//	  We simply replace the load with a simple mov and keep the
435	//	  pipeline going. We can't really do this inline because
436	//	  p16 is always reset to 1 when lc > 0.
437	//
438.failure_in_pipe1:
439	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
4401:
441(p16)	mov val1[0]=r0
442(EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
443	br.ctop.dptk 1b
444	;;
445	mov pr=saved_pr,0xffffffffffff0000
446	mov ar.lc=saved_lc
447	mov ar.pfs=saved_pfs
448	br.ret.sptk.many rp
449
450	//
451	// This is the case where the byte by byte copy fails on the load
452	// when we copy the head. We need to finish the pipeline and copy
453	// zeros for the rest of the destination. Since this happens
454	// at the top we still need to fill the body and tail.
455.failure_in_pipe2:
456	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
4572:
458(p16)	mov val1[0]=r0
459(EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
460	br.ctop.dptk 2b
461	;;
462	sub len=enddst,dst1,1		// precompute len
463	br.cond.dptk.many .failure_in1bis
464	;;
465
466	//
467	// Here we handle the head & tail part when we check for alignment.
468	// The following code handles only the load failures. The
469	// main diffculty comes from the fact that loads/stores are
470	// scheduled. So when you fail on a load, the stores corresponding
471	// to previous successful loads must be executed.
472	//
473	// However some simplifications are possible given the way
474	// things work.
475	//
476	// 1) HEAD
477	// Theory of operation:
478	//
479	//  Page A   | Page B
480	//  ---------|-----
481	//          1|8 x
482	//	  1 2|8 x
483	//	    4|8 x
484	//	  1 4|8 x
485	//        2 4|8 x
486	//      1 2 4|8 x
487	//	     |1
488	//	     |2 x
489	//	     |4 x
490	//
491	// page_size >= 4k (2^12).  (x means 4, 2, 1)
492	// Here we suppose Page A exists and Page B does not.
493	//
494	// As we move towards eight byte alignment we may encounter faults.
495	// The numbers on each page show the size of the load (current alignment).
496	//
497	// Key point:
498	//	- if you fail on 1, 2, 4 then you have never executed any smaller
499	//	  size loads, e.g. failing ld4 means no ld1 nor ld2 executed
500	//	  before.
501	//
502	// This allows us to simplify the cleanup code, because basically you
503	// only have to worry about "pending" stores in the case of a failing
504	// ld8(). Given the way the code is written today, this means only
505	// worry about st2, st4. There we can use the information encapsulated
506	// into the predicates.
507	//
508	// Other key point:
509	//	- if you fail on the ld8 in the head, it means you went straight
510	//	  to it, i.e. 8byte alignment within an unexisting page.
511	// Again this comes from the fact that if you crossed just for the ld8 then
512	// you are 8byte aligned but also 16byte align, therefore you would
513	// either go for the 16byte copy loop OR the ld8 in the tail part.
514	// The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
515	// because it would mean you had 15bytes to copy in which case you
516	// would have defaulted to the byte by byte copy.
517	//
518	//
519	// 2) TAIL
520	// Here we now we have less than 16 bytes AND we are either 8 or 16 byte
521	// aligned.
522	//
523	// Key point:
524	// This means that we either:
525	//		- are right on a page boundary
526	//	OR
527	//		- are at more than 16 bytes from a page boundary with
528	//		  at most 15 bytes to copy: no chance of crossing.
529	//
530	// This allows us to assume that if we fail on a load we haven't possibly
531	// executed any of the previous (tail) ones, so we don't need to do
532	// any stores. For instance, if we fail on ld2, this means we had
533	// 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
534	//
535	// This means that we are in a situation similar the a fault in the
536	// head part. That's nice!
537	//
538.failure_in1:
539	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
540	sub len=endsrc,src1,1
541	//
542	// we know that ret0 can never be zero at this point
543	// because we failed why trying to do a load, i.e. there is still
544	// some work to do.
545	// The failure_in1bis and length problem is taken care of at the
546	// calling side.
547	//
548	;;
549.failure_in1bis:		// from (.failure_in3)
550	mov ar.lc=len		// Continue with a stupid byte store.
551	;;
5525:
553	st1 [dst1]=r0,1
554	br.cloop.dptk 5b
555	;;
556	mov pr=saved_pr,0xffffffffffff0000
557	mov ar.lc=saved_lc
558	mov ar.pfs=saved_pfs
559	br.ret.sptk.many rp
560
561	//
562	// Here we simply restart the loop but instead
563	// of doing loads we fill the pipeline with zeroes
564	// We can't simply store r0 because we may have valid
565	// data in transit in the pipeline.
566	// ar.lc and ar.ec are setup correctly at this point
567	//
568	// we MUST use src1/endsrc here and not dst1/enddst because
569	// of the pipeline effect.
570	//
571.failure_in3:
572	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
573	;;
5742:
575(p16)	mov val1[0]=r0
576(p16)	mov val2[0]=r0
577(EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16
578(EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
579	br.ctop.dptk 2b
580	;;
581	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
582	sub len=enddst,dst1,1		// precompute len
583(p6)	br.cond.dptk .failure_in1bis
584	;;
585	mov pr=saved_pr,0xffffffffffff0000
586	mov ar.lc=saved_lc
587	mov ar.pfs=saved_pfs
588	br.ret.sptk.many rp
589
590.failure_in2:
591	sub ret0=endsrc,src1
592	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
593	sub len=enddst,dst1,1		// precompute len
594(p6)	br.cond.dptk .failure_in1bis
595	;;
596	mov pr=saved_pr,0xffffffffffff0000
597	mov ar.lc=saved_lc
598	mov ar.pfs=saved_pfs
599	br.ret.sptk.many rp
600
601	//
602	// handling of failures on stores: that's the easy part
603	//
604.failure_out:
605	sub ret0=enddst,dst1
606	mov pr=saved_pr,0xffffffffffff0000
607	mov ar.lc=saved_lc
608
609	mov ar.pfs=saved_pfs
610	br.ret.sptk.many rp
611END(__copy_user)
612EXPORT_SYMBOL(__copy_user)
613