xref: /openbmc/linux/arch/ia64/lib/copy_user.S (revision e007c533)
11da177e4SLinus Torvalds/*
21da177e4SLinus Torvalds *
31da177e4SLinus Torvalds * Optimized version of the copy_user() routine.
41da177e4SLinus Torvalds * It is used to copy date across the kernel/user boundary.
51da177e4SLinus Torvalds *
61da177e4SLinus Torvalds * The source and destination are always on opposite side of
71da177e4SLinus Torvalds * the boundary. When reading from user space we must catch
81da177e4SLinus Torvalds * faults on loads. When writing to user space we must catch
91da177e4SLinus Torvalds * errors on stores. Note that because of the nature of the copy
101da177e4SLinus Torvalds * we don't need to worry about overlapping regions.
111da177e4SLinus Torvalds *
121da177e4SLinus Torvalds *
131da177e4SLinus Torvalds * Inputs:
141da177e4SLinus Torvalds *	in0	address of source buffer
151da177e4SLinus Torvalds *	in1	address of destination buffer
161da177e4SLinus Torvalds *	in2	number of bytes to copy
171da177e4SLinus Torvalds *
181da177e4SLinus Torvalds * Outputs:
191da177e4SLinus Torvalds *	ret0	0 in case of success. The number of bytes NOT copied in
201da177e4SLinus Torvalds *		case of error.
211da177e4SLinus Torvalds *
221da177e4SLinus Torvalds * Copyright (C) 2000-2001 Hewlett-Packard Co
231da177e4SLinus Torvalds *	Stephane Eranian <eranian@hpl.hp.com>
241da177e4SLinus Torvalds *
251da177e4SLinus Torvalds * Fixme:
261da177e4SLinus Torvalds *	- handle the case where we have more than 16 bytes and the alignment
271da177e4SLinus Torvalds *	  are different.
281da177e4SLinus Torvalds *	- more benchmarking
291da177e4SLinus Torvalds *	- fix extraneous stop bit introduced by the EX() macro.
301da177e4SLinus Torvalds */
311da177e4SLinus Torvalds
321da177e4SLinus Torvalds#include <asm/asmmacro.h>
33e007c533SAl Viro#include <asm/export.h>
341da177e4SLinus Torvalds
351da177e4SLinus Torvalds//
361da177e4SLinus Torvalds// Tuneable parameters
371da177e4SLinus Torvalds//
381da177e4SLinus Torvalds#define COPY_BREAK	16	// we do byte copy below (must be >=16)
391da177e4SLinus Torvalds#define PIPE_DEPTH	21	// pipe depth
401da177e4SLinus Torvalds
411da177e4SLinus Torvalds#define EPI		p[PIPE_DEPTH-1]
421da177e4SLinus Torvalds
431da177e4SLinus Torvalds//
441da177e4SLinus Torvalds// arguments
451da177e4SLinus Torvalds//
461da177e4SLinus Torvalds#define dst		in0
471da177e4SLinus Torvalds#define src		in1
481da177e4SLinus Torvalds#define len		in2
491da177e4SLinus Torvalds
501da177e4SLinus Torvalds//
511da177e4SLinus Torvalds// local registers
521da177e4SLinus Torvalds//
531da177e4SLinus Torvalds#define t1		r2	// rshift in bytes
541da177e4SLinus Torvalds#define t2		r3	// lshift in bytes
551da177e4SLinus Torvalds#define rshift		r14	// right shift in bits
561da177e4SLinus Torvalds#define lshift		r15	// left shift in bits
571da177e4SLinus Torvalds#define word1		r16
581da177e4SLinus Torvalds#define word2		r17
591da177e4SLinus Torvalds#define cnt		r18
601da177e4SLinus Torvalds#define len2		r19
611da177e4SLinus Torvalds#define saved_lc	r20
621da177e4SLinus Torvalds#define saved_pr	r21
631da177e4SLinus Torvalds#define tmp		r22
641da177e4SLinus Torvalds#define val		r23
651da177e4SLinus Torvalds#define src1		r24
661da177e4SLinus Torvalds#define dst1		r25
671da177e4SLinus Torvalds#define src2		r26
681da177e4SLinus Torvalds#define dst2		r27
691da177e4SLinus Torvalds#define len1		r28
701da177e4SLinus Torvalds#define enddst		r29
711da177e4SLinus Torvalds#define endsrc		r30
721da177e4SLinus Torvalds#define saved_pfs	r31
731da177e4SLinus Torvalds
741da177e4SLinus TorvaldsGLOBAL_ENTRY(__copy_user)
751da177e4SLinus Torvalds	.prologue
761da177e4SLinus Torvalds	.save ar.pfs, saved_pfs
771da177e4SLinus Torvalds	alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
781da177e4SLinus Torvalds
791da177e4SLinus Torvalds	.rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
801da177e4SLinus Torvalds	.rotp p[PIPE_DEPTH]
811da177e4SLinus Torvalds
821da177e4SLinus Torvalds	adds len2=-1,len	// br.ctop is repeat/until
831da177e4SLinus Torvalds	mov ret0=r0
841da177e4SLinus Torvalds
851da177e4SLinus Torvalds	;;			// RAW of cfm when len=0
861da177e4SLinus Torvalds	cmp.eq p8,p0=r0,len	// check for zero length
871da177e4SLinus Torvalds	.save ar.lc, saved_lc
881da177e4SLinus Torvalds	mov saved_lc=ar.lc	// preserve ar.lc (slow)
891da177e4SLinus Torvalds(p8)	br.ret.spnt.many rp	// empty mempcy()
901da177e4SLinus Torvalds	;;
911da177e4SLinus Torvalds	add enddst=dst,len	// first byte after end of source
921da177e4SLinus Torvalds	add endsrc=src,len	// first byte after end of destination
931da177e4SLinus Torvalds	.save pr, saved_pr
941da177e4SLinus Torvalds	mov saved_pr=pr		// preserve predicates
951da177e4SLinus Torvalds
961da177e4SLinus Torvalds	.body
971da177e4SLinus Torvalds
981da177e4SLinus Torvalds	mov dst1=dst		// copy because of rotation
991da177e4SLinus Torvalds	mov ar.ec=PIPE_DEPTH
1001da177e4SLinus Torvalds	mov pr.rot=1<<16	// p16=true all others are false
1011da177e4SLinus Torvalds
1021da177e4SLinus Torvalds	mov src1=src		// copy because of rotation
1031da177e4SLinus Torvalds	mov ar.lc=len2		// initialize lc for small count
1041da177e4SLinus Torvalds	cmp.lt p10,p7=COPY_BREAK,len	// if len > COPY_BREAK then long copy
1051da177e4SLinus Torvalds
1061da177e4SLinus Torvalds	xor tmp=src,dst		// same alignment test prepare
1071da177e4SLinus Torvalds(p10)	br.cond.dptk .long_copy_user
1081da177e4SLinus Torvalds	;;			// RAW pr.rot/p16 ?
1091da177e4SLinus Torvalds	//
1101da177e4SLinus Torvalds	// Now we do the byte by byte loop with software pipeline
1111da177e4SLinus Torvalds	//
1121da177e4SLinus Torvalds	// p7 is necessarily false by now
1131da177e4SLinus Torvalds1:
1141da177e4SLinus Torvalds	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
1151da177e4SLinus Torvalds	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
1161da177e4SLinus Torvalds	br.ctop.dptk.few 1b
1171da177e4SLinus Torvalds	;;
1181da177e4SLinus Torvalds	mov ar.lc=saved_lc
1191da177e4SLinus Torvalds	mov pr=saved_pr,0xffffffffffff0000
1201da177e4SLinus Torvalds	mov ar.pfs=saved_pfs		// restore ar.ec
1211da177e4SLinus Torvalds	br.ret.sptk.many rp		// end of short memcpy
1221da177e4SLinus Torvalds
1231da177e4SLinus Torvalds	//
1241da177e4SLinus Torvalds	// Not 8-byte aligned
1251da177e4SLinus Torvalds	//
1261da177e4SLinus Torvalds.diff_align_copy_user:
1271da177e4SLinus Torvalds	// At this point we know we have more than 16 bytes to copy
1281da177e4SLinus Torvalds	// and also that src and dest do _not_ have the same alignment.
1291da177e4SLinus Torvalds	and src2=0x7,src1				// src offset
1301da177e4SLinus Torvalds	and dst2=0x7,dst1				// dst offset
1311da177e4SLinus Torvalds	;;
1321da177e4SLinus Torvalds	// The basic idea is that we copy byte-by-byte at the head so
1331da177e4SLinus Torvalds	// that we can reach 8-byte alignment for both src1 and dst1.
1341da177e4SLinus Torvalds	// Then copy the body using software pipelined 8-byte copy,
1351da177e4SLinus Torvalds	// shifting the two back-to-back words right and left, then copy
1361da177e4SLinus Torvalds	// the tail by copying byte-by-byte.
1371da177e4SLinus Torvalds	//
1381da177e4SLinus Torvalds	// Fault handling. If the byte-by-byte at the head fails on the
1391da177e4SLinus Torvalds	// load, then restart and finish the pipleline by copying zeros
1401da177e4SLinus Torvalds	// to the dst1. Then copy zeros for the rest of dst1.
1411da177e4SLinus Torvalds	// If 8-byte software pipeline fails on the load, do the same as
1421da177e4SLinus Torvalds	// failure_in3 does. If the byte-by-byte at the tail fails, it is
1431da177e4SLinus Torvalds	// handled simply by failure_in_pipe1.
1441da177e4SLinus Torvalds	//
1451da177e4SLinus Torvalds	// The case p14 represents the source has more bytes in the
1461da177e4SLinus Torvalds	// the first word (by the shifted part), whereas the p15 needs to
1471da177e4SLinus Torvalds	// copy some bytes from the 2nd word of the source that has the
1481da177e4SLinus Torvalds	// tail of the 1st of the destination.
1491da177e4SLinus Torvalds	//
1501da177e4SLinus Torvalds
1511da177e4SLinus Torvalds	//
1521da177e4SLinus Torvalds	// Optimization. If dst1 is 8-byte aligned (quite common), we don't need
1531da177e4SLinus Torvalds	// to copy the head to dst1, to start 8-byte copy software pipeline.
1541da177e4SLinus Torvalds	// We know src1 is not 8-byte aligned in this case.
1551da177e4SLinus Torvalds	//
1561da177e4SLinus Torvalds	cmp.eq p14,p15=r0,dst2
1571da177e4SLinus Torvalds(p15)	br.cond.spnt 1f
1581da177e4SLinus Torvalds	;;
1591da177e4SLinus Torvalds	sub t1=8,src2
1601da177e4SLinus Torvalds	mov t2=src2
1611da177e4SLinus Torvalds	;;
1621da177e4SLinus Torvalds	shl rshift=t2,3
1631da177e4SLinus Torvalds	sub len1=len,t1					// set len1
1641da177e4SLinus Torvalds	;;
1651da177e4SLinus Torvalds	sub lshift=64,rshift
1661da177e4SLinus Torvalds	;;
1671da177e4SLinus Torvalds	br.cond.spnt .word_copy_user
1681da177e4SLinus Torvalds	;;
1691da177e4SLinus Torvalds1:
1701da177e4SLinus Torvalds	cmp.leu	p14,p15=src2,dst2
1711da177e4SLinus Torvalds	sub t1=dst2,src2
1721da177e4SLinus Torvalds	;;
1731da177e4SLinus Torvalds	.pred.rel "mutex", p14, p15
1741da177e4SLinus Torvalds(p14)	sub word1=8,src2				// (8 - src offset)
1751da177e4SLinus Torvalds(p15)	sub t1=r0,t1					// absolute value
1761da177e4SLinus Torvalds(p15)	sub word1=8,dst2				// (8 - dst offset)
1771da177e4SLinus Torvalds	;;
1781da177e4SLinus Torvalds	// For the case p14, we don't need to copy the shifted part to
1791da177e4SLinus Torvalds	// the 1st word of destination.
1801da177e4SLinus Torvalds	sub t2=8,t1
1811da177e4SLinus Torvalds(p14)	sub word1=word1,t1
1821da177e4SLinus Torvalds	;;
1831da177e4SLinus Torvalds	sub len1=len,word1				// resulting len
1841da177e4SLinus Torvalds(p15)	shl rshift=t1,3					// in bits
1851da177e4SLinus Torvalds(p14)	shl rshift=t2,3
1861da177e4SLinus Torvalds	;;
1871da177e4SLinus Torvalds(p14)	sub len1=len1,t1
1881da177e4SLinus Torvalds	adds cnt=-1,word1
1891da177e4SLinus Torvalds	;;
1901da177e4SLinus Torvalds	sub lshift=64,rshift
1911da177e4SLinus Torvalds	mov ar.ec=PIPE_DEPTH
1921da177e4SLinus Torvalds	mov pr.rot=1<<16	// p16=true all others are false
1931da177e4SLinus Torvalds	mov ar.lc=cnt
1941da177e4SLinus Torvalds	;;
1951da177e4SLinus Torvalds2:
1961da177e4SLinus Torvalds	EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1)
1971da177e4SLinus Torvalds	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
1981da177e4SLinus Torvalds	br.ctop.dptk.few 2b
1991da177e4SLinus Torvalds	;;
2001da177e4SLinus Torvalds	clrrrb
2011da177e4SLinus Torvalds	;;
2021da177e4SLinus Torvalds.word_copy_user:
2031da177e4SLinus Torvalds	cmp.gtu p9,p0=16,len1
2041da177e4SLinus Torvalds(p9)	br.cond.spnt 4f			// if (16 > len1) skip 8-byte copy
2051da177e4SLinus Torvalds	;;
2061da177e4SLinus Torvalds	shr.u cnt=len1,3		// number of 64-bit words
2071da177e4SLinus Torvalds	;;
2081da177e4SLinus Torvalds	adds cnt=-1,cnt
2091da177e4SLinus Torvalds	;;
2101da177e4SLinus Torvalds	.pred.rel "mutex", p14, p15
2111da177e4SLinus Torvalds(p14)	sub src1=src1,t2
2121da177e4SLinus Torvalds(p15)	sub src1=src1,t1
2131da177e4SLinus Torvalds	//
2141da177e4SLinus Torvalds	// Now both src1 and dst1 point to an 8-byte aligned address. And
2151da177e4SLinus Torvalds	// we have more than 8 bytes to copy.
2161da177e4SLinus Torvalds	//
2171da177e4SLinus Torvalds	mov ar.lc=cnt
2181da177e4SLinus Torvalds	mov ar.ec=PIPE_DEPTH
2191da177e4SLinus Torvalds	mov pr.rot=1<<16	// p16=true all others are false
2201da177e4SLinus Torvalds	;;
2211da177e4SLinus Torvalds3:
2221da177e4SLinus Torvalds	//
2231da177e4SLinus Torvalds	// The pipleline consists of 3 stages:
2241da177e4SLinus Torvalds	// 1 (p16):	Load a word from src1
2251da177e4SLinus Torvalds	// 2 (EPI_1):	Shift right pair, saving to tmp
2261da177e4SLinus Torvalds	// 3 (EPI):	Store tmp to dst1
2271da177e4SLinus Torvalds	//
2281da177e4SLinus Torvalds	// To make it simple, use at least 2 (p16) loops to set up val1[n]
2291da177e4SLinus Torvalds	// because we need 2 back-to-back val1[] to get tmp.
2301da177e4SLinus Torvalds	// Note that this implies EPI_2 must be p18 or greater.
2311da177e4SLinus Torvalds	//
2321da177e4SLinus Torvalds
2331da177e4SLinus Torvalds#define EPI_1		p[PIPE_DEPTH-2]
2341da177e4SLinus Torvalds#define SWITCH(pred, shift)	cmp.eq pred,p0=shift,rshift
2351da177e4SLinus Torvalds#define CASE(pred, shift)	\
2361da177e4SLinus Torvalds	(pred)	br.cond.spnt .copy_user_bit##shift
2371da177e4SLinus Torvalds#define BODY(rshift)						\
2381da177e4SLinus Torvalds.copy_user_bit##rshift:						\
2391da177e4SLinus Torvalds1:								\
2401da177e4SLinus Torvalds	EX(.failure_out,(EPI) st8 [dst1]=tmp,8);		\
2411da177e4SLinus Torvalds(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
2421da177e4SLinus Torvalds	EX(3f,(p16) ld8 val1[1]=[src1],8);			\
2431da177e4SLinus Torvalds(p16)	mov val1[0]=r0;						\
2441da177e4SLinus Torvalds	br.ctop.dptk 1b;					\
2451da177e4SLinus Torvalds	;;							\
2461da177e4SLinus Torvalds	br.cond.sptk.many .diff_align_do_tail;			\
2471da177e4SLinus Torvalds2:								\
2481da177e4SLinus Torvalds(EPI)	st8 [dst1]=tmp,8;					\
2491da177e4SLinus Torvalds(EPI_1)	shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
2501da177e4SLinus Torvalds3:								\
2511da177e4SLinus Torvalds(p16)	mov val1[1]=r0;						\
2521da177e4SLinus Torvalds(p16)	mov val1[0]=r0;						\
2531da177e4SLinus Torvalds	br.ctop.dptk 2b;					\
2541da177e4SLinus Torvalds	;;							\
2551da177e4SLinus Torvalds	br.cond.sptk.many .failure_in2
2561da177e4SLinus Torvalds
2571da177e4SLinus Torvalds	//
2581da177e4SLinus Torvalds	// Since the instruction 'shrp' requires a fixed 128-bit value
2591da177e4SLinus Torvalds	// specifying the bits to shift, we need to provide 7 cases
2601da177e4SLinus Torvalds	// below.
2611da177e4SLinus Torvalds	//
2621da177e4SLinus Torvalds	SWITCH(p6, 8)
2631da177e4SLinus Torvalds	SWITCH(p7, 16)
2641da177e4SLinus Torvalds	SWITCH(p8, 24)
2651da177e4SLinus Torvalds	SWITCH(p9, 32)
2661da177e4SLinus Torvalds	SWITCH(p10, 40)
2671da177e4SLinus Torvalds	SWITCH(p11, 48)
2681da177e4SLinus Torvalds	SWITCH(p12, 56)
2691da177e4SLinus Torvalds	;;
2701da177e4SLinus Torvalds	CASE(p6, 8)
2711da177e4SLinus Torvalds	CASE(p7, 16)
2721da177e4SLinus Torvalds	CASE(p8, 24)
2731da177e4SLinus Torvalds	CASE(p9, 32)
2741da177e4SLinus Torvalds	CASE(p10, 40)
2751da177e4SLinus Torvalds	CASE(p11, 48)
2761da177e4SLinus Torvalds	CASE(p12, 56)
2771da177e4SLinus Torvalds	;;
2781da177e4SLinus Torvalds	BODY(8)
2791da177e4SLinus Torvalds	BODY(16)
2801da177e4SLinus Torvalds	BODY(24)
2811da177e4SLinus Torvalds	BODY(32)
2821da177e4SLinus Torvalds	BODY(40)
2831da177e4SLinus Torvalds	BODY(48)
2841da177e4SLinus Torvalds	BODY(56)
2851da177e4SLinus Torvalds	;;
2861da177e4SLinus Torvalds.diff_align_do_tail:
2871da177e4SLinus Torvalds	.pred.rel "mutex", p14, p15
2881da177e4SLinus Torvalds(p14)	sub src1=src1,t1
2891da177e4SLinus Torvalds(p14)	adds dst1=-8,dst1
2901da177e4SLinus Torvalds(p15)	sub dst1=dst1,t1
2911da177e4SLinus Torvalds	;;
2921da177e4SLinus Torvalds4:
2931da177e4SLinus Torvalds	// Tail correction.
2941da177e4SLinus Torvalds	//
2951da177e4SLinus Torvalds	// The problem with this piplelined loop is that the last word is not
2961da177e4SLinus Torvalds	// loaded and thus parf of the last word written is not correct.
2971da177e4SLinus Torvalds	// To fix that, we simply copy the tail byte by byte.
2981da177e4SLinus Torvalds
2991da177e4SLinus Torvalds	sub len1=endsrc,src1,1
3001da177e4SLinus Torvalds	clrrrb
3011da177e4SLinus Torvalds	;;
3021da177e4SLinus Torvalds	mov ar.ec=PIPE_DEPTH
3031da177e4SLinus Torvalds	mov pr.rot=1<<16	// p16=true all others are false
3041da177e4SLinus Torvalds	mov ar.lc=len1
3051da177e4SLinus Torvalds	;;
3061da177e4SLinus Torvalds5:
3071da177e4SLinus Torvalds	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
3081da177e4SLinus Torvalds	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
3091da177e4SLinus Torvalds	br.ctop.dptk.few 5b
3101da177e4SLinus Torvalds	;;
3111da177e4SLinus Torvalds	mov ar.lc=saved_lc
3121da177e4SLinus Torvalds	mov pr=saved_pr,0xffffffffffff0000
3131da177e4SLinus Torvalds	mov ar.pfs=saved_pfs
3141da177e4SLinus Torvalds	br.ret.sptk.many rp
3151da177e4SLinus Torvalds
3161da177e4SLinus Torvalds	//
3171da177e4SLinus Torvalds	// Beginning of long mempcy (i.e. > 16 bytes)
3181da177e4SLinus Torvalds	//
3191da177e4SLinus Torvalds.long_copy_user:
3201da177e4SLinus Torvalds	tbit.nz p6,p7=src1,0	// odd alignment
3211da177e4SLinus Torvalds	and tmp=7,tmp
3221da177e4SLinus Torvalds	;;
3231da177e4SLinus Torvalds	cmp.eq p10,p8=r0,tmp
3241da177e4SLinus Torvalds	mov len1=len		// copy because of rotation
3251da177e4SLinus Torvalds(p8)	br.cond.dpnt .diff_align_copy_user
3261da177e4SLinus Torvalds	;;
3271da177e4SLinus Torvalds	// At this point we know we have more than 16 bytes to copy
3281da177e4SLinus Torvalds	// and also that both src and dest have the same alignment
3291da177e4SLinus Torvalds	// which may not be the one we want. So for now we must move
3301da177e4SLinus Torvalds	// forward slowly until we reach 16byte alignment: no need to
3311da177e4SLinus Torvalds	// worry about reaching the end of buffer.
3321da177e4SLinus Torvalds	//
3331da177e4SLinus Torvalds	EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)	// 1-byte aligned
3341da177e4SLinus Torvalds(p6)	adds len1=-1,len1;;
3351da177e4SLinus Torvalds	tbit.nz p7,p0=src1,1
3361da177e4SLinus Torvalds	;;
3371da177e4SLinus Torvalds	EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)	// 2-byte aligned
3381da177e4SLinus Torvalds(p7)	adds len1=-2,len1;;
3391da177e4SLinus Torvalds	tbit.nz p8,p0=src1,2
3401da177e4SLinus Torvalds	;;
3411da177e4SLinus Torvalds	//
3421da177e4SLinus Torvalds	// Stop bit not required after ld4 because if we fail on ld4
3431da177e4SLinus Torvalds	// we have never executed the ld1, therefore st1 is not executed.
3441da177e4SLinus Torvalds	//
3451da177e4SLinus Torvalds	EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)	// 4-byte aligned
3461da177e4SLinus Torvalds	;;
3471da177e4SLinus Torvalds	EX(.failure_out,(p6) st1 [dst1]=val1[0],1)
3481da177e4SLinus Torvalds	tbit.nz p9,p0=src1,3
3491da177e4SLinus Torvalds	;;
3501da177e4SLinus Torvalds	//
3511da177e4SLinus Torvalds	// Stop bit not required after ld8 because if we fail on ld8
3521da177e4SLinus Torvalds	// we have never executed the ld2, therefore st2 is not executed.
3531da177e4SLinus Torvalds	//
3541da177e4SLinus Torvalds	EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)	// 8-byte aligned
3551da177e4SLinus Torvalds	EX(.failure_out,(p7) st2 [dst1]=val1[1],2)
3561da177e4SLinus Torvalds(p8)	adds len1=-4,len1
3571da177e4SLinus Torvalds	;;
3581da177e4SLinus Torvalds	EX(.failure_out, (p8) st4 [dst1]=val2[0],4)
3591da177e4SLinus Torvalds(p9)	adds len1=-8,len1;;
3601da177e4SLinus Torvalds	shr.u cnt=len1,4		// number of 128-bit (2x64bit) words
3611da177e4SLinus Torvalds	;;
3621da177e4SLinus Torvalds	EX(.failure_out, (p9) st8 [dst1]=val2[1],8)
3631da177e4SLinus Torvalds	tbit.nz p6,p0=len1,3
3641da177e4SLinus Torvalds	cmp.eq p7,p0=r0,cnt
3651da177e4SLinus Torvalds	adds tmp=-1,cnt			// br.ctop is repeat/until
3661da177e4SLinus Torvalds(p7)	br.cond.dpnt .dotail		// we have less than 16 bytes left
3671da177e4SLinus Torvalds	;;
3681da177e4SLinus Torvalds	adds src2=8,src1
3691da177e4SLinus Torvalds	adds dst2=8,dst1
3701da177e4SLinus Torvalds	mov ar.lc=tmp
3711da177e4SLinus Torvalds	;;
3721da177e4SLinus Torvalds	//
3731da177e4SLinus Torvalds	// 16bytes/iteration
3741da177e4SLinus Torvalds	//
3751da177e4SLinus Torvalds2:
3761da177e4SLinus Torvalds	EX(.failure_in3,(p16) ld8 val1[0]=[src1],16)
3771da177e4SLinus Torvalds(p16)	ld8 val2[0]=[src2],16
3781da177e4SLinus Torvalds
3791da177e4SLinus Torvalds	EX(.failure_out, (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16)
3801da177e4SLinus Torvalds(EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
3811da177e4SLinus Torvalds	br.ctop.dptk 2b
3821da177e4SLinus Torvalds	;;			// RAW on src1 when fall through from loop
3831da177e4SLinus Torvalds	//
3841da177e4SLinus Torvalds	// Tail correction based on len only
3851da177e4SLinus Torvalds	//
3861da177e4SLinus Torvalds	// No matter where we come from (loop or test) the src1 pointer
3871da177e4SLinus Torvalds	// is 16 byte aligned AND we have less than 16 bytes to copy.
3881da177e4SLinus Torvalds	//
3891da177e4SLinus Torvalds.dotail:
3901da177e4SLinus Torvalds	EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)	// at least 8 bytes
3911da177e4SLinus Torvalds	tbit.nz p7,p0=len1,2
3921da177e4SLinus Torvalds	;;
3931da177e4SLinus Torvalds	EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)	// at least 4 bytes
3941da177e4SLinus Torvalds	tbit.nz p8,p0=len1,1
3951da177e4SLinus Torvalds	;;
3961da177e4SLinus Torvalds	EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)	// at least 2 bytes
3971da177e4SLinus Torvalds	tbit.nz p9,p0=len1,0
3981da177e4SLinus Torvalds	;;
3991da177e4SLinus Torvalds	EX(.failure_out, (p6) st8 [dst1]=val1[0],8)
4001da177e4SLinus Torvalds	;;
4011da177e4SLinus Torvalds	EX(.failure_in1,(p9) ld1 val2[1]=[src1])	// only 1 byte left
4021da177e4SLinus Torvalds	mov ar.lc=saved_lc
4031da177e4SLinus Torvalds	;;
4041da177e4SLinus Torvalds	EX(.failure_out,(p7) st4 [dst1]=val1[1],4)
4051da177e4SLinus Torvalds	mov pr=saved_pr,0xffffffffffff0000
4061da177e4SLinus Torvalds	;;
4071da177e4SLinus Torvalds	EX(.failure_out, (p8)	st2 [dst1]=val2[0],2)
4081da177e4SLinus Torvalds	mov ar.pfs=saved_pfs
4091da177e4SLinus Torvalds	;;
4101da177e4SLinus Torvalds	EX(.failure_out, (p9)	st1 [dst1]=val2[1])
4111da177e4SLinus Torvalds	br.ret.sptk.many rp
4121da177e4SLinus Torvalds
4131da177e4SLinus Torvalds
4141da177e4SLinus Torvalds	//
4151da177e4SLinus Torvalds	// Here we handle the case where the byte by byte copy fails
4161da177e4SLinus Torvalds	// on the load.
4171da177e4SLinus Torvalds	// Several factors make the zeroing of the rest of the buffer kind of
4181da177e4SLinus Torvalds	// tricky:
4191da177e4SLinus Torvalds	//	- the pipeline: loads/stores are not in sync (pipeline)
4201da177e4SLinus Torvalds	//
4211da177e4SLinus Torvalds	//	  In the same loop iteration, the dst1 pointer does not directly
4221da177e4SLinus Torvalds	//	  reflect where the faulty load was.
4231da177e4SLinus Torvalds	//
4241da177e4SLinus Torvalds	//	- pipeline effect
4251da177e4SLinus Torvalds	//	  When you get a fault on load, you may have valid data from
4261da177e4SLinus Torvalds	//	  previous loads not yet store in transit. Such data must be
4271da177e4SLinus Torvalds	//	  store normally before moving onto zeroing the rest.
4281da177e4SLinus Torvalds	//
4291da177e4SLinus Torvalds	//	- single/multi dispersal independence.
4301da177e4SLinus Torvalds	//
4311da177e4SLinus Torvalds	// solution:
4321da177e4SLinus Torvalds	//	- we don't disrupt the pipeline, i.e. data in transit in
4331da177e4SLinus Torvalds	//	  the software pipeline will be eventually move to memory.
4341da177e4SLinus Torvalds	//	  We simply replace the load with a simple mov and keep the
4351da177e4SLinus Torvalds	//	  pipeline going. We can't really do this inline because
4361da177e4SLinus Torvalds	//	  p16 is always reset to 1 when lc > 0.
4371da177e4SLinus Torvalds	//
4381da177e4SLinus Torvalds.failure_in_pipe1:
4391da177e4SLinus Torvalds	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
4401da177e4SLinus Torvalds1:
4411da177e4SLinus Torvalds(p16)	mov val1[0]=r0
4421da177e4SLinus Torvalds(EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
4431da177e4SLinus Torvalds	br.ctop.dptk 1b
4441da177e4SLinus Torvalds	;;
4451da177e4SLinus Torvalds	mov pr=saved_pr,0xffffffffffff0000
4461da177e4SLinus Torvalds	mov ar.lc=saved_lc
4471da177e4SLinus Torvalds	mov ar.pfs=saved_pfs
4481da177e4SLinus Torvalds	br.ret.sptk.many rp
4491da177e4SLinus Torvalds
4501da177e4SLinus Torvalds	//
4511da177e4SLinus Torvalds	// This is the case where the byte by byte copy fails on the load
4521da177e4SLinus Torvalds	// when we copy the head. We need to finish the pipeline and copy
4531da177e4SLinus Torvalds	// zeros for the rest of the destination. Since this happens
4541da177e4SLinus Torvalds	// at the top we still need to fill the body and tail.
4551da177e4SLinus Torvalds.failure_in_pipe2:
4561da177e4SLinus Torvalds	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
4571da177e4SLinus Torvalds2:
4581da177e4SLinus Torvalds(p16)	mov val1[0]=r0
4591da177e4SLinus Torvalds(EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
4601da177e4SLinus Torvalds	br.ctop.dptk 2b
4611da177e4SLinus Torvalds	;;
4621da177e4SLinus Torvalds	sub len=enddst,dst1,1		// precompute len
4631da177e4SLinus Torvalds	br.cond.dptk.many .failure_in1bis
4641da177e4SLinus Torvalds	;;
4651da177e4SLinus Torvalds
4661da177e4SLinus Torvalds	//
4671da177e4SLinus Torvalds	// Here we handle the head & tail part when we check for alignment.
4681da177e4SLinus Torvalds	// The following code handles only the load failures. The
4691da177e4SLinus Torvalds	// main diffculty comes from the fact that loads/stores are
4701da177e4SLinus Torvalds	// scheduled. So when you fail on a load, the stores corresponding
4711da177e4SLinus Torvalds	// to previous successful loads must be executed.
4721da177e4SLinus Torvalds	//
4731da177e4SLinus Torvalds	// However some simplifications are possible given the way
4741da177e4SLinus Torvalds	// things work.
4751da177e4SLinus Torvalds	//
4761da177e4SLinus Torvalds	// 1) HEAD
4771da177e4SLinus Torvalds	// Theory of operation:
4781da177e4SLinus Torvalds	//
4791da177e4SLinus Torvalds	//  Page A   | Page B
4801da177e4SLinus Torvalds	//  ---------|-----
4811da177e4SLinus Torvalds	//          1|8 x
4821da177e4SLinus Torvalds	//	  1 2|8 x
4831da177e4SLinus Torvalds	//	    4|8 x
4841da177e4SLinus Torvalds	//	  1 4|8 x
4851da177e4SLinus Torvalds	//        2 4|8 x
4861da177e4SLinus Torvalds	//      1 2 4|8 x
4871da177e4SLinus Torvalds	//	     |1
4881da177e4SLinus Torvalds	//	     |2 x
4891da177e4SLinus Torvalds	//	     |4 x
4901da177e4SLinus Torvalds	//
4911da177e4SLinus Torvalds	// page_size >= 4k (2^12).  (x means 4, 2, 1)
4921da177e4SLinus Torvalds	// Here we suppose Page A exists and Page B does not.
4931da177e4SLinus Torvalds	//
4941da177e4SLinus Torvalds	// As we move towards eight byte alignment we may encounter faults.
4951da177e4SLinus Torvalds	// The numbers on each page show the size of the load (current alignment).
4961da177e4SLinus Torvalds	//
4971da177e4SLinus Torvalds	// Key point:
4981da177e4SLinus Torvalds	//	- if you fail on 1, 2, 4 then you have never executed any smaller
4991da177e4SLinus Torvalds	//	  size loads, e.g. failing ld4 means no ld1 nor ld2 executed
5001da177e4SLinus Torvalds	//	  before.
5011da177e4SLinus Torvalds	//
5021da177e4SLinus Torvalds	// This allows us to simplify the cleanup code, because basically you
5031da177e4SLinus Torvalds	// only have to worry about "pending" stores in the case of a failing
5041da177e4SLinus Torvalds	// ld8(). Given the way the code is written today, this means only
5051da177e4SLinus Torvalds	// worry about st2, st4. There we can use the information encapsulated
5061da177e4SLinus Torvalds	// into the predicates.
5071da177e4SLinus Torvalds	//
5081da177e4SLinus Torvalds	// Other key point:
5091da177e4SLinus Torvalds	//	- if you fail on the ld8 in the head, it means you went straight
5101da177e4SLinus Torvalds	//	  to it, i.e. 8byte alignment within an unexisting page.
5111da177e4SLinus Torvalds	// Again this comes from the fact that if you crossed just for the ld8 then
5121da177e4SLinus Torvalds	// you are 8byte aligned but also 16byte align, therefore you would
5131da177e4SLinus Torvalds	// either go for the 16byte copy loop OR the ld8 in the tail part.
5141da177e4SLinus Torvalds	// The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
5151da177e4SLinus Torvalds	// because it would mean you had 15bytes to copy in which case you
5161da177e4SLinus Torvalds	// would have defaulted to the byte by byte copy.
5171da177e4SLinus Torvalds	//
5181da177e4SLinus Torvalds	//
5191da177e4SLinus Torvalds	// 2) TAIL
5201da177e4SLinus Torvalds	// Here we now we have less than 16 bytes AND we are either 8 or 16 byte
5211da177e4SLinus Torvalds	// aligned.
5221da177e4SLinus Torvalds	//
5231da177e4SLinus Torvalds	// Key point:
5241da177e4SLinus Torvalds	// This means that we either:
5251da177e4SLinus Torvalds	//		- are right on a page boundary
5261da177e4SLinus Torvalds	//	OR
5271da177e4SLinus Torvalds	//		- are at more than 16 bytes from a page boundary with
5281da177e4SLinus Torvalds	//		  at most 15 bytes to copy: no chance of crossing.
5291da177e4SLinus Torvalds	//
5301da177e4SLinus Torvalds	// This allows us to assume that if we fail on a load we haven't possibly
5311da177e4SLinus Torvalds	// executed any of the previous (tail) ones, so we don't need to do
5321da177e4SLinus Torvalds	// any stores. For instance, if we fail on ld2, this means we had
5331da177e4SLinus Torvalds	// 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
5341da177e4SLinus Torvalds	//
5351da177e4SLinus Torvalds	// This means that we are in a situation similar the a fault in the
5361da177e4SLinus Torvalds	// head part. That's nice!
5371da177e4SLinus Torvalds	//
5381da177e4SLinus Torvalds.failure_in1:
5391da177e4SLinus Torvalds	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
5401da177e4SLinus Torvalds	sub len=endsrc,src1,1
5411da177e4SLinus Torvalds	//
5421da177e4SLinus Torvalds	// we know that ret0 can never be zero at this point
5431da177e4SLinus Torvalds	// because we failed why trying to do a load, i.e. there is still
5441da177e4SLinus Torvalds	// some work to do.
5451da177e4SLinus Torvalds	// The failure_in1bis and length problem is taken care of at the
5461da177e4SLinus Torvalds	// calling side.
5471da177e4SLinus Torvalds	//
5481da177e4SLinus Torvalds	;;
5491da177e4SLinus Torvalds.failure_in1bis:		// from (.failure_in3)
5501da177e4SLinus Torvalds	mov ar.lc=len		// Continue with a stupid byte store.
5511da177e4SLinus Torvalds	;;
5521da177e4SLinus Torvalds5:
5531da177e4SLinus Torvalds	st1 [dst1]=r0,1
5541da177e4SLinus Torvalds	br.cloop.dptk 5b
5551da177e4SLinus Torvalds	;;
5561da177e4SLinus Torvalds	mov pr=saved_pr,0xffffffffffff0000
5571da177e4SLinus Torvalds	mov ar.lc=saved_lc
5581da177e4SLinus Torvalds	mov ar.pfs=saved_pfs
5591da177e4SLinus Torvalds	br.ret.sptk.many rp
5601da177e4SLinus Torvalds
5611da177e4SLinus Torvalds	//
5621da177e4SLinus Torvalds	// Here we simply restart the loop but instead
5631da177e4SLinus Torvalds	// of doing loads we fill the pipeline with zeroes
5641da177e4SLinus Torvalds	// We can't simply store r0 because we may have valid
5651da177e4SLinus Torvalds	// data in transit in the pipeline.
5661da177e4SLinus Torvalds	// ar.lc and ar.ec are setup correctly at this point
5671da177e4SLinus Torvalds	//
5681da177e4SLinus Torvalds	// we MUST use src1/endsrc here and not dst1/enddst because
5691da177e4SLinus Torvalds	// of the pipeline effect.
5701da177e4SLinus Torvalds	//
5711da177e4SLinus Torvalds.failure_in3:
5721da177e4SLinus Torvalds	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
5731da177e4SLinus Torvalds	;;
5741da177e4SLinus Torvalds2:
5751da177e4SLinus Torvalds(p16)	mov val1[0]=r0
5761da177e4SLinus Torvalds(p16)	mov val2[0]=r0
5771da177e4SLinus Torvalds(EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16
5781da177e4SLinus Torvalds(EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
5791da177e4SLinus Torvalds	br.ctop.dptk 2b
5801da177e4SLinus Torvalds	;;
5811da177e4SLinus Torvalds	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
5821da177e4SLinus Torvalds	sub len=enddst,dst1,1		// precompute len
5831da177e4SLinus Torvalds(p6)	br.cond.dptk .failure_in1bis
5841da177e4SLinus Torvalds	;;
5851da177e4SLinus Torvalds	mov pr=saved_pr,0xffffffffffff0000
5861da177e4SLinus Torvalds	mov ar.lc=saved_lc
5871da177e4SLinus Torvalds	mov ar.pfs=saved_pfs
5881da177e4SLinus Torvalds	br.ret.sptk.many rp
5891da177e4SLinus Torvalds
5901da177e4SLinus Torvalds.failure_in2:
5911da177e4SLinus Torvalds	sub ret0=endsrc,src1
5921da177e4SLinus Torvalds	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
5931da177e4SLinus Torvalds	sub len=enddst,dst1,1		// precompute len
5941da177e4SLinus Torvalds(p6)	br.cond.dptk .failure_in1bis
5951da177e4SLinus Torvalds	;;
5961da177e4SLinus Torvalds	mov pr=saved_pr,0xffffffffffff0000
5971da177e4SLinus Torvalds	mov ar.lc=saved_lc
5981da177e4SLinus Torvalds	mov ar.pfs=saved_pfs
5991da177e4SLinus Torvalds	br.ret.sptk.many rp
6001da177e4SLinus Torvalds
6011da177e4SLinus Torvalds	//
6021da177e4SLinus Torvalds	// handling of failures on stores: that's the easy part
6031da177e4SLinus Torvalds	//
6041da177e4SLinus Torvalds.failure_out:
6051da177e4SLinus Torvalds	sub ret0=enddst,dst1
6061da177e4SLinus Torvalds	mov pr=saved_pr,0xffffffffffff0000
6071da177e4SLinus Torvalds	mov ar.lc=saved_lc
6081da177e4SLinus Torvalds
6091da177e4SLinus Torvalds	mov ar.pfs=saved_pfs
6101da177e4SLinus Torvalds	br.ret.sptk.many rp
6111da177e4SLinus TorvaldsEND(__copy_user)
612e007c533SAl ViroEXPORT_SYMBOL(__copy_user)
613