xref: /openbmc/linux/arch/ia64/lib/clear_user.S (revision 95e9fd10)
1/*
2 * This routine clears to zero a linear memory buffer in user space.
3 *
4 * Inputs:
5 *	in0:	address of buffer
6 *	in1:	length of buffer in bytes
7 * Outputs:
8 *	r8:	number of bytes that didn't get cleared due to a fault
9 *
10 * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co
11 *	Stephane Eranian <eranian@hpl.hp.com>
12 */
13
14#include <asm/asmmacro.h>
15
16//
17// arguments
18//
19#define buf		r32
20#define len		r33
21
22//
23// local registers
24//
25#define cnt		r16
26#define buf2		r17
27#define saved_lc	r18
28#define saved_pfs	r19
29#define tmp		r20
30#define len2		r21
31#define len3		r22
32
33//
34// Theory of operations:
35//	- we check whether or not the buffer is small, i.e., less than 17
36//	  in which case we do the byte by byte loop.
37//
38//	- Otherwise we go progressively from 1 byte store to 8byte store in
39//	  the head part, the body is a 16byte store loop and we finish we the
40//	  tail for the last 15 bytes.
41//	  The good point about this breakdown is that the long buffer handling
42//	  contains only 2 branches.
43//
44//	The reason for not using shifting & masking for both the head and the
45//	tail is to stay semantically correct. This routine is not supposed
46//	to write bytes outside of the buffer. While most of the time this would
47//	be ok, we can't tolerate a mistake. A classical example is the case
48//	of multithreaded code were to the extra bytes touched is actually owned
49//	by another thread which runs concurrently to ours. Another, less likely,
50//	example is with device drivers where reading an I/O mapped location may
51//	have side effects (same thing for writing).
52//
53
54GLOBAL_ENTRY(__do_clear_user)
55	.prologue
56	.save ar.pfs, saved_pfs
57	alloc	saved_pfs=ar.pfs,2,0,0,0
58	cmp.eq p6,p0=r0,len		// check for zero length
59	.save ar.lc, saved_lc
60	mov saved_lc=ar.lc		// preserve ar.lc (slow)
61	.body
62	;;				// avoid WAW on CFM
63	adds tmp=-1,len			// br.ctop is repeat/until
64	mov ret0=len			// return value is length at this point
65(p6)	br.ret.spnt.many rp
66	;;
67	cmp.lt p6,p0=16,len		// if len > 16 then long memset
68	mov ar.lc=tmp			// initialize lc for small count
69(p6)	br.cond.dptk .long_do_clear
70	;;				// WAR on ar.lc
71	//
72	// worst case 16 iterations, avg 8 iterations
73	//
74	// We could have played with the predicates to use the extra
75	// M slot for 2 stores/iteration but the cost the initialization
76	// the various counters compared to how long the loop is supposed
77	// to last on average does not make this solution viable.
78	//
791:
80	EX( .Lexit1, st1 [buf]=r0,1 )
81	adds len=-1,len			// countdown length using len
82	br.cloop.dptk 1b
83	;;				// avoid RAW on ar.lc
84	//
85	// .Lexit4: comes from byte by byte loop
86	//	    len contains bytes left
87.Lexit1:
88	mov ret0=len			// faster than using ar.lc
89	mov ar.lc=saved_lc
90	br.ret.sptk.many rp		// end of short clear_user
91
92
93	//
94	// At this point we know we have more than 16 bytes to copy
95	// so we focus on alignment (no branches required)
96	//
97	// The use of len/len2 for countdown of the number of bytes left
98	// instead of ret0 is due to the fact that the exception code
99	// changes the values of r8.
100	//
101.long_do_clear:
102	tbit.nz p6,p0=buf,0		// odd alignment (for long_do_clear)
103	;;
104	EX( .Lexit3, (p6) st1 [buf]=r0,1 )	// 1-byte aligned
105(p6)	adds len=-1,len;;		// sync because buf is modified
106	tbit.nz p6,p0=buf,1
107	;;
108	EX( .Lexit3, (p6) st2 [buf]=r0,2 )	// 2-byte aligned
109(p6)	adds len=-2,len;;
110	tbit.nz p6,p0=buf,2
111	;;
112	EX( .Lexit3, (p6) st4 [buf]=r0,4 )	// 4-byte aligned
113(p6)	adds len=-4,len;;
114	tbit.nz p6,p0=buf,3
115	;;
116	EX( .Lexit3, (p6) st8 [buf]=r0,8 )	// 8-byte aligned
117(p6)	adds len=-8,len;;
118	shr.u cnt=len,4		// number of 128-bit (2x64bit) words
119	;;
120	cmp.eq p6,p0=r0,cnt
121	adds tmp=-1,cnt
122(p6)	br.cond.dpnt .dotail		// we have less than 16 bytes left
123	;;
124	adds buf2=8,buf			// setup second base pointer
125	mov ar.lc=tmp
126	;;
127
128	//
129	// 16bytes/iteration core loop
130	//
131	// The second store can never generate a fault because
132	// we come into the loop only when we are 16-byte aligned.
133	// This means that if we cross a page then it will always be
134	// in the first store and never in the second.
135	//
136	//
137	// We need to keep track of the remaining length. A possible (optimistic)
138	// way would be to use ar.lc and derive how many byte were left by
139	// doing : left= 16*ar.lc + 16.  this would avoid the addition at
140	// every iteration.
141	// However we need to keep the synchronization point. A template
142	// M;;MB does not exist and thus we can keep the addition at no
143	// extra cycle cost (use a nop slot anyway). It also simplifies the
144	// (unlikely)  error recovery code
145	//
146
1472:	EX(.Lexit3, st8 [buf]=r0,16 )
148	;;				// needed to get len correct when error
149	st8 [buf2]=r0,16
150	adds len=-16,len
151	br.cloop.dptk 2b
152	;;
153	mov ar.lc=saved_lc
154	//
155	// tail correction based on len only
156	//
157	// We alternate the use of len3,len2 to allow parallelism and correct
158	// error handling. We also reuse p6/p7 to return correct value.
159	// The addition of len2/len3 does not cost anything more compared to
160	// the regular memset as we had empty slots.
161	//
162.dotail:
163	mov len2=len			// for parallelization of error handling
164	mov len3=len
165	tbit.nz p6,p0=len,3
166	;;
167	EX( .Lexit2, (p6) st8 [buf]=r0,8 )	// at least 8 bytes
168(p6)	adds len3=-8,len2
169	tbit.nz p7,p6=len,2
170	;;
171	EX( .Lexit2, (p7) st4 [buf]=r0,4 )	// at least 4 bytes
172(p7)	adds len2=-4,len3
173	tbit.nz p6,p7=len,1
174	;;
175	EX( .Lexit2, (p6) st2 [buf]=r0,2 )	// at least 2 bytes
176(p6)	adds len3=-2,len2
177	tbit.nz p7,p6=len,0
178	;;
179	EX( .Lexit2, (p7) st1 [buf]=r0 )	// only 1 byte left
180	mov ret0=r0				// success
181	br.ret.sptk.many rp			// end of most likely path
182
183	//
184	// Outlined error handling code
185	//
186
187	//
188	// .Lexit3: comes from core loop, need restore pr/lc
189	//	    len contains bytes left
190	//
191	//
192	// .Lexit2:
193	//	if p6 -> coming from st8 or st2 : len2 contains what's left
194	//	if p7 -> coming from st4 or st1 : len3 contains what's left
195	// We must restore lc/pr even though might not have been used.
196.Lexit2:
197	.pred.rel "mutex", p6, p7
198(p6)	mov len=len2
199(p7)	mov len=len3
200	;;
201	//
202	// .Lexit4: comes from head, need not restore pr/lc
203	//	    len contains bytes left
204	//
205.Lexit3:
206	mov ret0=len
207	mov ar.lc=saved_lc
208	br.ret.sptk.many rp
209END(__do_clear_user)
210