xref: /openbmc/linux/arch/ia64/lib/clear_user.S (revision 8730046c)
1/*
2 * This routine clears to zero a linear memory buffer in user space.
3 *
4 * Inputs:
5 *	in0:	address of buffer
6 *	in1:	length of buffer in bytes
7 * Outputs:
8 *	r8:	number of bytes that didn't get cleared due to a fault
9 *
10 * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co
11 *	Stephane Eranian <eranian@hpl.hp.com>
12 */
13
14#include <asm/asmmacro.h>
15#include <asm/export.h>
16
17//
18// arguments
19//
20#define buf		r32
21#define len		r33
22
23//
24// local registers
25//
26#define cnt		r16
27#define buf2		r17
28#define saved_lc	r18
29#define saved_pfs	r19
30#define tmp		r20
31#define len2		r21
32#define len3		r22
33
34//
35// Theory of operations:
36//	- we check whether or not the buffer is small, i.e., less than 17
37//	  in which case we do the byte by byte loop.
38//
39//	- Otherwise we go progressively from 1 byte store to 8byte store in
40//	  the head part, the body is a 16byte store loop and we finish we the
41//	  tail for the last 15 bytes.
42//	  The good point about this breakdown is that the long buffer handling
43//	  contains only 2 branches.
44//
45//	The reason for not using shifting & masking for both the head and the
46//	tail is to stay semantically correct. This routine is not supposed
47//	to write bytes outside of the buffer. While most of the time this would
48//	be ok, we can't tolerate a mistake. A classical example is the case
49//	of multithreaded code were to the extra bytes touched is actually owned
50//	by another thread which runs concurrently to ours. Another, less likely,
51//	example is with device drivers where reading an I/O mapped location may
52//	have side effects (same thing for writing).
53//
54
55GLOBAL_ENTRY(__do_clear_user)
56	.prologue
57	.save ar.pfs, saved_pfs
58	alloc	saved_pfs=ar.pfs,2,0,0,0
59	cmp.eq p6,p0=r0,len		// check for zero length
60	.save ar.lc, saved_lc
61	mov saved_lc=ar.lc		// preserve ar.lc (slow)
62	.body
63	;;				// avoid WAW on CFM
64	adds tmp=-1,len			// br.ctop is repeat/until
65	mov ret0=len			// return value is length at this point
66(p6)	br.ret.spnt.many rp
67	;;
68	cmp.lt p6,p0=16,len		// if len > 16 then long memset
69	mov ar.lc=tmp			// initialize lc for small count
70(p6)	br.cond.dptk .long_do_clear
71	;;				// WAR on ar.lc
72	//
73	// worst case 16 iterations, avg 8 iterations
74	//
75	// We could have played with the predicates to use the extra
76	// M slot for 2 stores/iteration but the cost the initialization
77	// the various counters compared to how long the loop is supposed
78	// to last on average does not make this solution viable.
79	//
801:
81	EX( .Lexit1, st1 [buf]=r0,1 )
82	adds len=-1,len			// countdown length using len
83	br.cloop.dptk 1b
84	;;				// avoid RAW on ar.lc
85	//
86	// .Lexit4: comes from byte by byte loop
87	//	    len contains bytes left
88.Lexit1:
89	mov ret0=len			// faster than using ar.lc
90	mov ar.lc=saved_lc
91	br.ret.sptk.many rp		// end of short clear_user
92
93
94	//
95	// At this point we know we have more than 16 bytes to copy
96	// so we focus on alignment (no branches required)
97	//
98	// The use of len/len2 for countdown of the number of bytes left
99	// instead of ret0 is due to the fact that the exception code
100	// changes the values of r8.
101	//
102.long_do_clear:
103	tbit.nz p6,p0=buf,0		// odd alignment (for long_do_clear)
104	;;
105	EX( .Lexit3, (p6) st1 [buf]=r0,1 )	// 1-byte aligned
106(p6)	adds len=-1,len;;		// sync because buf is modified
107	tbit.nz p6,p0=buf,1
108	;;
109	EX( .Lexit3, (p6) st2 [buf]=r0,2 )	// 2-byte aligned
110(p6)	adds len=-2,len;;
111	tbit.nz p6,p0=buf,2
112	;;
113	EX( .Lexit3, (p6) st4 [buf]=r0,4 )	// 4-byte aligned
114(p6)	adds len=-4,len;;
115	tbit.nz p6,p0=buf,3
116	;;
117	EX( .Lexit3, (p6) st8 [buf]=r0,8 )	// 8-byte aligned
118(p6)	adds len=-8,len;;
119	shr.u cnt=len,4		// number of 128-bit (2x64bit) words
120	;;
121	cmp.eq p6,p0=r0,cnt
122	adds tmp=-1,cnt
123(p6)	br.cond.dpnt .dotail		// we have less than 16 bytes left
124	;;
125	adds buf2=8,buf			// setup second base pointer
126	mov ar.lc=tmp
127	;;
128
129	//
130	// 16bytes/iteration core loop
131	//
132	// The second store can never generate a fault because
133	// we come into the loop only when we are 16-byte aligned.
134	// This means that if we cross a page then it will always be
135	// in the first store and never in the second.
136	//
137	//
138	// We need to keep track of the remaining length. A possible (optimistic)
139	// way would be to use ar.lc and derive how many byte were left by
140	// doing : left= 16*ar.lc + 16.  this would avoid the addition at
141	// every iteration.
142	// However we need to keep the synchronization point. A template
143	// M;;MB does not exist and thus we can keep the addition at no
144	// extra cycle cost (use a nop slot anyway). It also simplifies the
145	// (unlikely)  error recovery code
146	//
147
1482:	EX(.Lexit3, st8 [buf]=r0,16 )
149	;;				// needed to get len correct when error
150	st8 [buf2]=r0,16
151	adds len=-16,len
152	br.cloop.dptk 2b
153	;;
154	mov ar.lc=saved_lc
155	//
156	// tail correction based on len only
157	//
158	// We alternate the use of len3,len2 to allow parallelism and correct
159	// error handling. We also reuse p6/p7 to return correct value.
160	// The addition of len2/len3 does not cost anything more compared to
161	// the regular memset as we had empty slots.
162	//
163.dotail:
164	mov len2=len			// for parallelization of error handling
165	mov len3=len
166	tbit.nz p6,p0=len,3
167	;;
168	EX( .Lexit2, (p6) st8 [buf]=r0,8 )	// at least 8 bytes
169(p6)	adds len3=-8,len2
170	tbit.nz p7,p6=len,2
171	;;
172	EX( .Lexit2, (p7) st4 [buf]=r0,4 )	// at least 4 bytes
173(p7)	adds len2=-4,len3
174	tbit.nz p6,p7=len,1
175	;;
176	EX( .Lexit2, (p6) st2 [buf]=r0,2 )	// at least 2 bytes
177(p6)	adds len3=-2,len2
178	tbit.nz p7,p6=len,0
179	;;
180	EX( .Lexit2, (p7) st1 [buf]=r0 )	// only 1 byte left
181	mov ret0=r0				// success
182	br.ret.sptk.many rp			// end of most likely path
183
184	//
185	// Outlined error handling code
186	//
187
188	//
189	// .Lexit3: comes from core loop, need restore pr/lc
190	//	    len contains bytes left
191	//
192	//
193	// .Lexit2:
194	//	if p6 -> coming from st8 or st2 : len2 contains what's left
195	//	if p7 -> coming from st4 or st1 : len3 contains what's left
196	// We must restore lc/pr even though might not have been used.
197.Lexit2:
198	.pred.rel "mutex", p6, p7
199(p6)	mov len=len2
200(p7)	mov len=len3
201	;;
202	//
203	// .Lexit4: comes from head, need not restore pr/lc
204	//	    len contains bytes left
205	//
206.Lexit3:
207	mov ret0=len
208	mov ar.lc=saved_lc
209	br.ret.sptk.many rp
210END(__do_clear_user)
211EXPORT_SYMBOL(__do_clear_user)
212