1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001-2008 Silicon Graphics, Inc. All rights reserved. 4 * 5 * A simple uncached page allocator using the generic allocator. This 6 * allocator first utilizes the spare (spill) pages found in the EFI 7 * memmap and will then start converting cached pages to uncached ones 8 * at a granule at a time. Node awareness is implemented by having a 9 * pool of pages per node. 10 */ 11 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/string.h> 18 #include <linux/efi.h> 19 #include <linux/nmi.h> 20 #include <linux/genalloc.h> 21 #include <linux/gfp.h> 22 #include <asm/page.h> 23 #include <asm/pal.h> 24 #include <asm/pgtable.h> 25 #include <linux/atomic.h> 26 #include <asm/tlbflush.h> 27 28 29 extern void __init efi_memmap_walk_uc(efi_freemem_callback_t, void *); 30 31 struct uncached_pool { 32 struct gen_pool *pool; 33 struct mutex add_chunk_mutex; /* serialize adding a converted chunk */ 34 int nchunks_added; /* #of converted chunks added to pool */ 35 atomic_t status; /* smp called function's return status*/ 36 }; 37 38 #define MAX_CONVERTED_CHUNKS_PER_NODE 2 39 40 struct uncached_pool uncached_pools[MAX_NUMNODES]; 41 42 43 static void uncached_ipi_visibility(void *data) 44 { 45 int status; 46 struct uncached_pool *uc_pool = (struct uncached_pool *)data; 47 48 status = ia64_pal_prefetch_visibility(PAL_VISIBILITY_PHYSICAL); 49 if ((status != PAL_VISIBILITY_OK) && 50 (status != PAL_VISIBILITY_OK_REMOTE_NEEDED)) 51 atomic_inc(&uc_pool->status); 52 } 53 54 55 static void uncached_ipi_mc_drain(void *data) 56 { 57 int status; 58 struct uncached_pool *uc_pool = (struct uncached_pool *)data; 59 60 status = ia64_pal_mc_drain(); 61 if (status != PAL_STATUS_SUCCESS) 62 atomic_inc(&uc_pool->status); 63 } 64 65 66 /* 67 * Add a new chunk of uncached memory pages to the specified pool. 68 * 69 * @pool: pool to add new chunk of uncached memory to 70 * @nid: node id of node to allocate memory from, or -1 71 * 72 * This is accomplished by first allocating a granule of cached memory pages 73 * and then converting them to uncached memory pages. 74 */ 75 static int uncached_add_chunk(struct uncached_pool *uc_pool, int nid) 76 { 77 struct page *page; 78 int status, i, nchunks_added = uc_pool->nchunks_added; 79 unsigned long c_addr, uc_addr; 80 81 if (mutex_lock_interruptible(&uc_pool->add_chunk_mutex) != 0) 82 return -1; /* interrupted by a signal */ 83 84 if (uc_pool->nchunks_added > nchunks_added) { 85 /* someone added a new chunk while we were waiting */ 86 mutex_unlock(&uc_pool->add_chunk_mutex); 87 return 0; 88 } 89 90 if (uc_pool->nchunks_added >= MAX_CONVERTED_CHUNKS_PER_NODE) { 91 mutex_unlock(&uc_pool->add_chunk_mutex); 92 return -1; 93 } 94 95 /* attempt to allocate a granule's worth of cached memory pages */ 96 97 page = __alloc_pages_node(nid, 98 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE, 99 IA64_GRANULE_SHIFT-PAGE_SHIFT); 100 if (!page) { 101 mutex_unlock(&uc_pool->add_chunk_mutex); 102 return -1; 103 } 104 105 /* convert the memory pages from cached to uncached */ 106 107 c_addr = (unsigned long)page_address(page); 108 uc_addr = c_addr - PAGE_OFFSET + __IA64_UNCACHED_OFFSET; 109 110 /* 111 * There's a small race here where it's possible for someone to 112 * access the page through /dev/mem halfway through the conversion 113 * to uncached - not sure it's really worth bothering about 114 */ 115 for (i = 0; i < (IA64_GRANULE_SIZE / PAGE_SIZE); i++) 116 SetPageUncached(&page[i]); 117 118 flush_tlb_kernel_range(uc_addr, uc_addr + IA64_GRANULE_SIZE); 119 120 status = ia64_pal_prefetch_visibility(PAL_VISIBILITY_PHYSICAL); 121 if (status == PAL_VISIBILITY_OK_REMOTE_NEEDED) { 122 atomic_set(&uc_pool->status, 0); 123 smp_call_function(uncached_ipi_visibility, uc_pool, 1); 124 if (atomic_read(&uc_pool->status)) 125 goto failed; 126 } else if (status != PAL_VISIBILITY_OK) 127 goto failed; 128 129 preempt_disable(); 130 131 flush_icache_range(uc_addr, uc_addr + IA64_GRANULE_SIZE); 132 133 /* flush the just introduced uncached translation from the TLB */ 134 local_flush_tlb_all(); 135 136 preempt_enable(); 137 138 status = ia64_pal_mc_drain(); 139 if (status != PAL_STATUS_SUCCESS) 140 goto failed; 141 atomic_set(&uc_pool->status, 0); 142 smp_call_function(uncached_ipi_mc_drain, uc_pool, 1); 143 if (atomic_read(&uc_pool->status)) 144 goto failed; 145 146 /* 147 * The chunk of memory pages has been converted to uncached so now we 148 * can add it to the pool. 149 */ 150 status = gen_pool_add(uc_pool->pool, uc_addr, IA64_GRANULE_SIZE, nid); 151 if (status) 152 goto failed; 153 154 uc_pool->nchunks_added++; 155 mutex_unlock(&uc_pool->add_chunk_mutex); 156 return 0; 157 158 /* failed to convert or add the chunk so give it back to the kernel */ 159 failed: 160 for (i = 0; i < (IA64_GRANULE_SIZE / PAGE_SIZE); i++) 161 ClearPageUncached(&page[i]); 162 163 free_pages(c_addr, IA64_GRANULE_SHIFT-PAGE_SHIFT); 164 mutex_unlock(&uc_pool->add_chunk_mutex); 165 return -1; 166 } 167 168 169 /* 170 * uncached_alloc_page 171 * 172 * @starting_nid: node id of node to start with, or -1 173 * @n_pages: number of contiguous pages to allocate 174 * 175 * Allocate the specified number of contiguous uncached pages on the 176 * the requested node. If not enough contiguous uncached pages are available 177 * on the requested node, roundrobin starting with the next higher node. 178 */ 179 unsigned long uncached_alloc_page(int starting_nid, int n_pages) 180 { 181 unsigned long uc_addr; 182 struct uncached_pool *uc_pool; 183 int nid; 184 185 if (unlikely(starting_nid >= MAX_NUMNODES)) 186 return 0; 187 188 if (starting_nid < 0) 189 starting_nid = numa_node_id(); 190 nid = starting_nid; 191 192 do { 193 if (!node_state(nid, N_HIGH_MEMORY)) 194 continue; 195 uc_pool = &uncached_pools[nid]; 196 if (uc_pool->pool == NULL) 197 continue; 198 do { 199 uc_addr = gen_pool_alloc(uc_pool->pool, 200 n_pages * PAGE_SIZE); 201 if (uc_addr != 0) 202 return uc_addr; 203 } while (uncached_add_chunk(uc_pool, nid) == 0); 204 205 } while ((nid = (nid + 1) % MAX_NUMNODES) != starting_nid); 206 207 return 0; 208 } 209 EXPORT_SYMBOL(uncached_alloc_page); 210 211 212 /* 213 * uncached_free_page 214 * 215 * @uc_addr: uncached address of first page to free 216 * @n_pages: number of contiguous pages to free 217 * 218 * Free the specified number of uncached pages. 219 */ 220 void uncached_free_page(unsigned long uc_addr, int n_pages) 221 { 222 int nid = paddr_to_nid(uc_addr - __IA64_UNCACHED_OFFSET); 223 struct gen_pool *pool = uncached_pools[nid].pool; 224 225 if (unlikely(pool == NULL)) 226 return; 227 228 if ((uc_addr & (0XFUL << 60)) != __IA64_UNCACHED_OFFSET) 229 panic("uncached_free_page invalid address %lx\n", uc_addr); 230 231 gen_pool_free(pool, uc_addr, n_pages * PAGE_SIZE); 232 } 233 EXPORT_SYMBOL(uncached_free_page); 234 235 236 /* 237 * uncached_build_memmap, 238 * 239 * @uc_start: uncached starting address of a chunk of uncached memory 240 * @uc_end: uncached ending address of a chunk of uncached memory 241 * @arg: ignored, (NULL argument passed in on call to efi_memmap_walk_uc()) 242 * 243 * Called at boot time to build a map of pages that can be used for 244 * memory special operations. 245 */ 246 static int __init uncached_build_memmap(u64 uc_start, u64 uc_end, void *arg) 247 { 248 int nid = paddr_to_nid(uc_start - __IA64_UNCACHED_OFFSET); 249 struct gen_pool *pool = uncached_pools[nid].pool; 250 size_t size = uc_end - uc_start; 251 252 touch_softlockup_watchdog(); 253 254 if (pool != NULL) { 255 memset((char *)uc_start, 0, size); 256 (void) gen_pool_add(pool, uc_start, size, nid); 257 } 258 return 0; 259 } 260 261 262 static int __init uncached_init(void) 263 { 264 int nid; 265 266 for_each_node_state(nid, N_ONLINE) { 267 uncached_pools[nid].pool = gen_pool_create(PAGE_SHIFT, nid); 268 mutex_init(&uncached_pools[nid].add_chunk_mutex); 269 } 270 271 efi_memmap_walk_uc(uncached_build_memmap, NULL); 272 return 0; 273 } 274 275 __initcall(uncached_init); 276