xref: /openbmc/linux/arch/ia64/kernel/unaligned.c (revision 0d3b051a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific unaligned trap handling.
4  *
5  * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * 2002/12/09   Fix rotating register handling (off-by-1 error, missing fr-rotation).  Fix
10  *		get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
11  *		stacked register returns an undefined value; it does NOT trigger a
12  *		"rsvd register fault").
13  * 2001/10/11	Fix unaligned access to rotating registers in s/w pipelined loops.
14  * 2001/08/13	Correct size of extended floats (float_fsz) from 16 to 10 bytes.
15  * 2001/01/17	Add support emulation of unaligned kernel accesses.
16  */
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/sched/signal.h>
20 #include <linux/tty.h>
21 #include <linux/extable.h>
22 #include <linux/ratelimit.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/intrinsics.h>
26 #include <asm/processor.h>
27 #include <asm/rse.h>
28 #include <asm/exception.h>
29 #include <asm/unaligned.h>
30 
31 extern int die_if_kernel(char *str, struct pt_regs *regs, long err);
32 
33 #undef DEBUG_UNALIGNED_TRAP
34 
35 #ifdef DEBUG_UNALIGNED_TRAP
36 # define DPRINT(a...)	do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
37 # define DDUMP(str,vp,len)	dump(str, vp, len)
38 
39 static void
40 dump (const char *str, void *vp, size_t len)
41 {
42 	unsigned char *cp = vp;
43 	int i;
44 
45 	printk("%s", str);
46 	for (i = 0; i < len; ++i)
47 		printk (" %02x", *cp++);
48 	printk("\n");
49 }
50 #else
51 # define DPRINT(a...)
52 # define DDUMP(str,vp,len)
53 #endif
54 
55 #define IA64_FIRST_STACKED_GR	32
56 #define IA64_FIRST_ROTATING_FR	32
57 #define SIGN_EXT9		0xffffffffffffff00ul
58 
59 /*
60  *  sysctl settable hook which tells the kernel whether to honor the
61  *  IA64_THREAD_UAC_NOPRINT prctl.  Because this is user settable, we want
62  *  to allow the super user to enable/disable this for security reasons
63  *  (i.e. don't allow attacker to fill up logs with unaligned accesses).
64  */
65 int no_unaligned_warning;
66 int unaligned_dump_stack;
67 
68 /*
69  * For M-unit:
70  *
71  *  opcode |   m  |   x6    |
72  * --------|------|---------|
73  * [40-37] | [36] | [35:30] |
74  * --------|------|---------|
75  *     4   |   1  |    6    | = 11 bits
76  * --------------------------
77  * However bits [31:30] are not directly useful to distinguish between
78  * load/store so we can use [35:32] instead, which gives the following
79  * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
80  * checking the m-bit until later in the load/store emulation.
81  */
82 #define IA64_OPCODE_MASK	0x1ef
83 #define IA64_OPCODE_SHIFT	32
84 
85 /*
86  * Table C-28 Integer Load/Store
87  *
88  * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
89  *
90  * ld8.fill, st8.fill  MUST be aligned because the RNATs are based on
91  * the address (bits [8:3]), so we must failed.
92  */
93 #define LD_OP            0x080
94 #define LDS_OP           0x081
95 #define LDA_OP           0x082
96 #define LDSA_OP          0x083
97 #define LDBIAS_OP        0x084
98 #define LDACQ_OP         0x085
99 /* 0x086, 0x087 are not relevant */
100 #define LDCCLR_OP        0x088
101 #define LDCNC_OP         0x089
102 #define LDCCLRACQ_OP     0x08a
103 #define ST_OP            0x08c
104 #define STREL_OP         0x08d
105 /* 0x08e,0x8f are not relevant */
106 
107 /*
108  * Table C-29 Integer Load +Reg
109  *
110  * we use the ld->m (bit [36:36]) field to determine whether or not we have
111  * a load/store of this form.
112  */
113 
114 /*
115  * Table C-30 Integer Load/Store +Imm
116  *
117  * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
118  *
119  * ld8.fill, st8.fill  must be aligned because the Nat register are based on
120  * the address, so we must fail and the program must be fixed.
121  */
122 #define LD_IMM_OP            0x0a0
123 #define LDS_IMM_OP           0x0a1
124 #define LDA_IMM_OP           0x0a2
125 #define LDSA_IMM_OP          0x0a3
126 #define LDBIAS_IMM_OP        0x0a4
127 #define LDACQ_IMM_OP         0x0a5
128 /* 0x0a6, 0xa7 are not relevant */
129 #define LDCCLR_IMM_OP        0x0a8
130 #define LDCNC_IMM_OP         0x0a9
131 #define LDCCLRACQ_IMM_OP     0x0aa
132 #define ST_IMM_OP            0x0ac
133 #define STREL_IMM_OP         0x0ad
134 /* 0x0ae,0xaf are not relevant */
135 
136 /*
137  * Table C-32 Floating-point Load/Store
138  */
139 #define LDF_OP           0x0c0
140 #define LDFS_OP          0x0c1
141 #define LDFA_OP          0x0c2
142 #define LDFSA_OP         0x0c3
143 /* 0x0c6 is irrelevant */
144 #define LDFCCLR_OP       0x0c8
145 #define LDFCNC_OP        0x0c9
146 /* 0x0cb is irrelevant  */
147 #define STF_OP           0x0cc
148 
149 /*
150  * Table C-33 Floating-point Load +Reg
151  *
152  * we use the ld->m (bit [36:36]) field to determine whether or not we have
153  * a load/store of this form.
154  */
155 
156 /*
157  * Table C-34 Floating-point Load/Store +Imm
158  */
159 #define LDF_IMM_OP       0x0e0
160 #define LDFS_IMM_OP      0x0e1
161 #define LDFA_IMM_OP      0x0e2
162 #define LDFSA_IMM_OP     0x0e3
163 /* 0x0e6 is irrelevant */
164 #define LDFCCLR_IMM_OP   0x0e8
165 #define LDFCNC_IMM_OP    0x0e9
166 #define STF_IMM_OP       0x0ec
167 
168 typedef struct {
169 	unsigned long	 qp:6;	/* [0:5]   */
170 	unsigned long    r1:7;	/* [6:12]  */
171 	unsigned long   imm:7;	/* [13:19] */
172 	unsigned long    r3:7;	/* [20:26] */
173 	unsigned long     x:1;  /* [27:27] */
174 	unsigned long  hint:2;	/* [28:29] */
175 	unsigned long x6_sz:2;	/* [30:31] */
176 	unsigned long x6_op:4;	/* [32:35], x6 = x6_sz|x6_op */
177 	unsigned long     m:1;	/* [36:36] */
178 	unsigned long    op:4;	/* [37:40] */
179 	unsigned long   pad:23; /* [41:63] */
180 } load_store_t;
181 
182 
183 typedef enum {
184 	UPD_IMMEDIATE,	/* ldXZ r1=[r3],imm(9) */
185 	UPD_REG		/* ldXZ r1=[r3],r2     */
186 } update_t;
187 
188 /*
189  * We use tables to keep track of the offsets of registers in the saved state.
190  * This way we save having big switch/case statements.
191  *
192  * We use bit 0 to indicate switch_stack or pt_regs.
193  * The offset is simply shifted by 1 bit.
194  * A 2-byte value should be enough to hold any kind of offset
195  *
196  * In case the calling convention changes (and thus pt_regs/switch_stack)
197  * simply use RSW instead of RPT or vice-versa.
198  */
199 
200 #define RPO(x)	((size_t) &((struct pt_regs *)0)->x)
201 #define RSO(x)	((size_t) &((struct switch_stack *)0)->x)
202 
203 #define RPT(x)		(RPO(x) << 1)
204 #define RSW(x)		(1| RSO(x)<<1)
205 
206 #define GR_OFFS(x)	(gr_info[x]>>1)
207 #define GR_IN_SW(x)	(gr_info[x] & 0x1)
208 
209 #define FR_OFFS(x)	(fr_info[x]>>1)
210 #define FR_IN_SW(x)	(fr_info[x] & 0x1)
211 
212 static u16 gr_info[32]={
213 	0,			/* r0 is read-only : WE SHOULD NEVER GET THIS */
214 
215 	RPT(r1), RPT(r2), RPT(r3),
216 
217 	RSW(r4), RSW(r5), RSW(r6), RSW(r7),
218 
219 	RPT(r8), RPT(r9), RPT(r10), RPT(r11),
220 	RPT(r12), RPT(r13), RPT(r14), RPT(r15),
221 
222 	RPT(r16), RPT(r17), RPT(r18), RPT(r19),
223 	RPT(r20), RPT(r21), RPT(r22), RPT(r23),
224 	RPT(r24), RPT(r25), RPT(r26), RPT(r27),
225 	RPT(r28), RPT(r29), RPT(r30), RPT(r31)
226 };
227 
228 static u16 fr_info[32]={
229 	0,			/* constant : WE SHOULD NEVER GET THIS */
230 	0,			/* constant : WE SHOULD NEVER GET THIS */
231 
232 	RSW(f2), RSW(f3), RSW(f4), RSW(f5),
233 
234 	RPT(f6), RPT(f7), RPT(f8), RPT(f9),
235 	RPT(f10), RPT(f11),
236 
237 	RSW(f12), RSW(f13), RSW(f14),
238 	RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
239 	RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
240 	RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
241 	RSW(f30), RSW(f31)
242 };
243 
244 /* Invalidate ALAT entry for integer register REGNO.  */
245 static void
246 invala_gr (int regno)
247 {
248 #	define F(reg)	case reg: ia64_invala_gr(reg); break
249 
250 	switch (regno) {
251 		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
252 		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
253 		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
254 		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
255 		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
256 		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
257 		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
258 		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
259 		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
260 		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
261 		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
262 		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
263 		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
264 		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
265 		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
266 		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
267 	}
268 #	undef F
269 }
270 
271 /* Invalidate ALAT entry for floating-point register REGNO.  */
272 static void
273 invala_fr (int regno)
274 {
275 #	define F(reg)	case reg: ia64_invala_fr(reg); break
276 
277 	switch (regno) {
278 		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
279 		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
280 		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
281 		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
282 		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
283 		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
284 		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
285 		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
286 		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
287 		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
288 		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
289 		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
290 		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
291 		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
292 		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
293 		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
294 	}
295 #	undef F
296 }
297 
298 static inline unsigned long
299 rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
300 {
301 	reg += rrb;
302 	if (reg >= sor)
303 		reg -= sor;
304 	return reg;
305 }
306 
307 static void
308 set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
309 {
310 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
311 	unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
312 	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
313 	unsigned long rnats, nat_mask;
314 	unsigned long on_kbs;
315 	long sof = (regs->cr_ifs) & 0x7f;
316 	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
317 	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
318 	long ridx = r1 - 32;
319 
320 	if (ridx >= sof) {
321 		/* this should never happen, as the "rsvd register fault" has higher priority */
322 		DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
323 		return;
324 	}
325 
326 	if (ridx < sor)
327 		ridx = rotate_reg(sor, rrb_gr, ridx);
328 
329 	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
330 	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
331 
332 	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
333 	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
334 	if (addr >= kbs) {
335 		/* the register is on the kernel backing store: easy... */
336 		rnat_addr = ia64_rse_rnat_addr(addr);
337 		if ((unsigned long) rnat_addr >= sw->ar_bspstore)
338 			rnat_addr = &sw->ar_rnat;
339 		nat_mask = 1UL << ia64_rse_slot_num(addr);
340 
341 		*addr = val;
342 		if (nat)
343 			*rnat_addr |=  nat_mask;
344 		else
345 			*rnat_addr &= ~nat_mask;
346 		return;
347 	}
348 
349 	if (!user_stack(current, regs)) {
350 		DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
351 		return;
352 	}
353 
354 	bspstore = (unsigned long *)regs->ar_bspstore;
355 	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
356 	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
357 	addr    = ia64_rse_skip_regs(bsp, ridx);
358 
359 	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
360 
361 	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
362 
363 	rnat_addr = ia64_rse_rnat_addr(addr);
364 
365 	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
366 	DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
367 	       (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
368 
369 	nat_mask = 1UL << ia64_rse_slot_num(addr);
370 	if (nat)
371 		rnats |=  nat_mask;
372 	else
373 		rnats &= ~nat_mask;
374 	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
375 
376 	DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
377 }
378 
379 
380 static void
381 get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
382 {
383 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
384 	unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
385 	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
386 	unsigned long rnats, nat_mask;
387 	unsigned long on_kbs;
388 	long sof = (regs->cr_ifs) & 0x7f;
389 	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
390 	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
391 	long ridx = r1 - 32;
392 
393 	if (ridx >= sof) {
394 		/* read of out-of-frame register returns an undefined value; 0 in our case.  */
395 		DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
396 		goto fail;
397 	}
398 
399 	if (ridx < sor)
400 		ridx = rotate_reg(sor, rrb_gr, ridx);
401 
402 	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
403 	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
404 
405 	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
406 	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
407 	if (addr >= kbs) {
408 		/* the register is on the kernel backing store: easy... */
409 		*val = *addr;
410 		if (nat) {
411 			rnat_addr = ia64_rse_rnat_addr(addr);
412 			if ((unsigned long) rnat_addr >= sw->ar_bspstore)
413 				rnat_addr = &sw->ar_rnat;
414 			nat_mask = 1UL << ia64_rse_slot_num(addr);
415 			*nat = (*rnat_addr & nat_mask) != 0;
416 		}
417 		return;
418 	}
419 
420 	if (!user_stack(current, regs)) {
421 		DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
422 		goto fail;
423 	}
424 
425 	bspstore = (unsigned long *)regs->ar_bspstore;
426 	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
427 	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
428 	addr    = ia64_rse_skip_regs(bsp, ridx);
429 
430 	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
431 
432 	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
433 
434 	if (nat) {
435 		rnat_addr = ia64_rse_rnat_addr(addr);
436 		nat_mask = 1UL << ia64_rse_slot_num(addr);
437 
438 		DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
439 
440 		ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
441 		*nat = (rnats & nat_mask) != 0;
442 	}
443 	return;
444 
445   fail:
446 	*val = 0;
447 	if (nat)
448 		*nat = 0;
449 	return;
450 }
451 
452 
453 static void
454 setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
455 {
456 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
457 	unsigned long addr;
458 	unsigned long bitmask;
459 	unsigned long *unat;
460 
461 	/*
462 	 * First takes care of stacked registers
463 	 */
464 	if (regnum >= IA64_FIRST_STACKED_GR) {
465 		set_rse_reg(regs, regnum, val, nat);
466 		return;
467 	}
468 
469 	/*
470 	 * Using r0 as a target raises a General Exception fault which has higher priority
471 	 * than the Unaligned Reference fault.
472 	 */
473 
474 	/*
475 	 * Now look at registers in [0-31] range and init correct UNAT
476 	 */
477 	if (GR_IN_SW(regnum)) {
478 		addr = (unsigned long)sw;
479 		unat = &sw->ar_unat;
480 	} else {
481 		addr = (unsigned long)regs;
482 		unat = &sw->caller_unat;
483 	}
484 	DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
485 	       addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
486 	/*
487 	 * add offset from base of struct
488 	 * and do it !
489 	 */
490 	addr += GR_OFFS(regnum);
491 
492 	*(unsigned long *)addr = val;
493 
494 	/*
495 	 * We need to clear the corresponding UNAT bit to fully emulate the load
496 	 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
497 	 */
498 	bitmask   = 1UL << (addr >> 3 & 0x3f);
499 	DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
500 	if (nat) {
501 		*unat |= bitmask;
502 	} else {
503 		*unat &= ~bitmask;
504 	}
505 	DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
506 }
507 
508 /*
509  * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
510  * range from 32-127, result is in the range from 0-95.
511  */
512 static inline unsigned long
513 fph_index (struct pt_regs *regs, long regnum)
514 {
515 	unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
516 	return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
517 }
518 
519 static void
520 setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
521 {
522 	struct switch_stack *sw = (struct switch_stack *)regs - 1;
523 	unsigned long addr;
524 
525 	/*
526 	 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
527 	 * Fault. Thus, when we get here, we know the partition is enabled.
528 	 * To update f32-f127, there are three choices:
529 	 *
530 	 *	(1) save f32-f127 to thread.fph and update the values there
531 	 *	(2) use a gigantic switch statement to directly access the registers
532 	 *	(3) generate code on the fly to update the desired register
533 	 *
534 	 * For now, we are using approach (1).
535 	 */
536 	if (regnum >= IA64_FIRST_ROTATING_FR) {
537 		ia64_sync_fph(current);
538 		current->thread.fph[fph_index(regs, regnum)] = *fpval;
539 	} else {
540 		/*
541 		 * pt_regs or switch_stack ?
542 		 */
543 		if (FR_IN_SW(regnum)) {
544 			addr = (unsigned long)sw;
545 		} else {
546 			addr = (unsigned long)regs;
547 		}
548 
549 		DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
550 
551 		addr += FR_OFFS(regnum);
552 		*(struct ia64_fpreg *)addr = *fpval;
553 
554 		/*
555 		 * mark the low partition as being used now
556 		 *
557 		 * It is highly unlikely that this bit is not already set, but
558 		 * let's do it for safety.
559 		 */
560 		regs->cr_ipsr |= IA64_PSR_MFL;
561 	}
562 }
563 
564 /*
565  * Those 2 inline functions generate the spilled versions of the constant floating point
566  * registers which can be used with stfX
567  */
568 static inline void
569 float_spill_f0 (struct ia64_fpreg *final)
570 {
571 	ia64_stf_spill(final, 0);
572 }
573 
574 static inline void
575 float_spill_f1 (struct ia64_fpreg *final)
576 {
577 	ia64_stf_spill(final, 1);
578 }
579 
580 static void
581 getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
582 {
583 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
584 	unsigned long addr;
585 
586 	/*
587 	 * From EAS-2.5: FPDisableFault has higher priority than
588 	 * Unaligned Fault. Thus, when we get here, we know the partition is
589 	 * enabled.
590 	 *
591 	 * When regnum > 31, the register is still live and we need to force a save
592 	 * to current->thread.fph to get access to it.  See discussion in setfpreg()
593 	 * for reasons and other ways of doing this.
594 	 */
595 	if (regnum >= IA64_FIRST_ROTATING_FR) {
596 		ia64_flush_fph(current);
597 		*fpval = current->thread.fph[fph_index(regs, regnum)];
598 	} else {
599 		/*
600 		 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
601 		 * not saved, we must generate their spilled form on the fly
602 		 */
603 		switch(regnum) {
604 		case 0:
605 			float_spill_f0(fpval);
606 			break;
607 		case 1:
608 			float_spill_f1(fpval);
609 			break;
610 		default:
611 			/*
612 			 * pt_regs or switch_stack ?
613 			 */
614 			addr =  FR_IN_SW(regnum) ? (unsigned long)sw
615 						 : (unsigned long)regs;
616 
617 			DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
618 			       FR_IN_SW(regnum), addr, FR_OFFS(regnum));
619 
620 			addr  += FR_OFFS(regnum);
621 			*fpval = *(struct ia64_fpreg *)addr;
622 		}
623 	}
624 }
625 
626 
627 static void
628 getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
629 {
630 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
631 	unsigned long addr, *unat;
632 
633 	if (regnum >= IA64_FIRST_STACKED_GR) {
634 		get_rse_reg(regs, regnum, val, nat);
635 		return;
636 	}
637 
638 	/*
639 	 * take care of r0 (read-only always evaluate to 0)
640 	 */
641 	if (regnum == 0) {
642 		*val = 0;
643 		if (nat)
644 			*nat = 0;
645 		return;
646 	}
647 
648 	/*
649 	 * Now look at registers in [0-31] range and init correct UNAT
650 	 */
651 	if (GR_IN_SW(regnum)) {
652 		addr = (unsigned long)sw;
653 		unat = &sw->ar_unat;
654 	} else {
655 		addr = (unsigned long)regs;
656 		unat = &sw->caller_unat;
657 	}
658 
659 	DPRINT("addr_base=%lx offset=0x%x\n", addr,  GR_OFFS(regnum));
660 
661 	addr += GR_OFFS(regnum);
662 
663 	*val  = *(unsigned long *)addr;
664 
665 	/*
666 	 * do it only when requested
667 	 */
668 	if (nat)
669 		*nat  = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
670 }
671 
672 static void
673 emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
674 {
675 	/*
676 	 * IMPORTANT:
677 	 * Given the way we handle unaligned speculative loads, we should
678 	 * not get to this point in the code but we keep this sanity check,
679 	 * just in case.
680 	 */
681 	if (ld.x6_op == 1 || ld.x6_op == 3) {
682 		printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
683 		if (die_if_kernel("unaligned reference on speculative load with register update\n",
684 				  regs, 30))
685 			return;
686 	}
687 
688 
689 	/*
690 	 * at this point, we know that the base register to update is valid i.e.,
691 	 * it's not r0
692 	 */
693 	if (type == UPD_IMMEDIATE) {
694 		unsigned long imm;
695 
696 		/*
697 		 * Load +Imm: ldXZ r1=[r3],imm(9)
698 		 *
699 		 *
700 		 * form imm9: [13:19] contain the first 7 bits
701 		 */
702 		imm = ld.x << 7 | ld.imm;
703 
704 		/*
705 		 * sign extend (1+8bits) if m set
706 		 */
707 		if (ld.m) imm |= SIGN_EXT9;
708 
709 		/*
710 		 * ifa == r3 and we know that the NaT bit on r3 was clear so
711 		 * we can directly use ifa.
712 		 */
713 		ifa += imm;
714 
715 		setreg(ld.r3, ifa, 0, regs);
716 
717 		DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
718 
719 	} else if (ld.m) {
720 		unsigned long r2;
721 		int nat_r2;
722 
723 		/*
724 		 * Load +Reg Opcode: ldXZ r1=[r3],r2
725 		 *
726 		 * Note: that we update r3 even in the case of ldfX.a
727 		 * (where the load does not happen)
728 		 *
729 		 * The way the load algorithm works, we know that r3 does not
730 		 * have its NaT bit set (would have gotten NaT consumption
731 		 * before getting the unaligned fault). So we can use ifa
732 		 * which equals r3 at this point.
733 		 *
734 		 * IMPORTANT:
735 		 * The above statement holds ONLY because we know that we
736 		 * never reach this code when trying to do a ldX.s.
737 		 * If we ever make it to here on an ldfX.s then
738 		 */
739 		getreg(ld.imm, &r2, &nat_r2, regs);
740 
741 		ifa += r2;
742 
743 		/*
744 		 * propagate Nat r2 -> r3
745 		 */
746 		setreg(ld.r3, ifa, nat_r2, regs);
747 
748 		DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
749 	}
750 }
751 
752 
753 static int
754 emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
755 {
756 	unsigned int len = 1 << ld.x6_sz;
757 	unsigned long val = 0;
758 
759 	/*
760 	 * r0, as target, doesn't need to be checked because Illegal Instruction
761 	 * faults have higher priority than unaligned faults.
762 	 *
763 	 * r0 cannot be found as the base as it would never generate an
764 	 * unaligned reference.
765 	 */
766 
767 	/*
768 	 * ldX.a we will emulate load and also invalidate the ALAT entry.
769 	 * See comment below for explanation on how we handle ldX.a
770 	 */
771 
772 	if (len != 2 && len != 4 && len != 8) {
773 		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
774 		return -1;
775 	}
776 	/* this assumes little-endian byte-order: */
777 	if (copy_from_user(&val, (void __user *) ifa, len))
778 		return -1;
779 	setreg(ld.r1, val, 0, regs);
780 
781 	/*
782 	 * check for updates on any kind of loads
783 	 */
784 	if (ld.op == 0x5 || ld.m)
785 		emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
786 
787 	/*
788 	 * handling of various loads (based on EAS2.4):
789 	 *
790 	 * ldX.acq (ordered load):
791 	 *	- acquire semantics would have been used, so force fence instead.
792 	 *
793 	 * ldX.c.clr (check load and clear):
794 	 *	- if we get to this handler, it's because the entry was not in the ALAT.
795 	 *	  Therefore the operation reverts to a normal load
796 	 *
797 	 * ldX.c.nc (check load no clear):
798 	 *	- same as previous one
799 	 *
800 	 * ldX.c.clr.acq (ordered check load and clear):
801 	 *	- same as above for c.clr part. The load needs to have acquire semantics. So
802 	 *	  we use the fence semantics which is stronger and thus ensures correctness.
803 	 *
804 	 * ldX.a (advanced load):
805 	 *	- suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
806 	 *	  address doesn't match requested size alignment. This means that we would
807 	 *	  possibly need more than one load to get the result.
808 	 *
809 	 *	  The load part can be handled just like a normal load, however the difficult
810 	 *	  part is to get the right thing into the ALAT. The critical piece of information
811 	 *	  in the base address of the load & size. To do that, a ld.a must be executed,
812 	 *	  clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
813 	 *	  if we use the same target register, we will be okay for the check.a instruction.
814 	 *	  If we look at the store, basically a stX [r3]=r1 checks the ALAT  for any entry
815 	 *	  which would overlap within [r3,r3+X] (the size of the load was store in the
816 	 *	  ALAT). If such an entry is found the entry is invalidated. But this is not good
817 	 *	  enough, take the following example:
818 	 *		r3=3
819 	 *		ld4.a r1=[r3]
820 	 *
821 	 *	  Could be emulated by doing:
822 	 *		ld1.a r1=[r3],1
823 	 *		store to temporary;
824 	 *		ld1.a r1=[r3],1
825 	 *		store & shift to temporary;
826 	 *		ld1.a r1=[r3],1
827 	 *		store & shift to temporary;
828 	 *		ld1.a r1=[r3]
829 	 *		store & shift to temporary;
830 	 *		r1=temporary
831 	 *
832 	 *	  So in this case, you would get the right value is r1 but the wrong info in
833 	 *	  the ALAT.  Notice that you could do it in reverse to finish with address 3
834 	 *	  but you would still get the size wrong.  To get the size right, one needs to
835 	 *	  execute exactly the same kind of load. You could do it from a aligned
836 	 *	  temporary location, but you would get the address wrong.
837 	 *
838 	 *	  So no matter what, it is not possible to emulate an advanced load
839 	 *	  correctly. But is that really critical ?
840 	 *
841 	 *	  We will always convert ld.a into a normal load with ALAT invalidated.  This
842 	 *	  will enable compiler to do optimization where certain code path after ld.a
843 	 *	  is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
844 	 *
845 	 *	  If there is a store after the advanced load, one must either do a ld.c.* or
846 	 *	  chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
847 	 *	  entry found in ALAT), and that's perfectly ok because:
848 	 *
849 	 *		- ld.c.*, if the entry is not present a  normal load is executed
850 	 *		- chk.a.*, if the entry is not present, execution jumps to recovery code
851 	 *
852 	 *	  In either case, the load can be potentially retried in another form.
853 	 *
854 	 *	  ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
855 	 *	  up a stale entry later). The register base update MUST also be performed.
856 	 */
857 
858 	/*
859 	 * when the load has the .acq completer then
860 	 * use ordering fence.
861 	 */
862 	if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
863 		mb();
864 
865 	/*
866 	 * invalidate ALAT entry in case of advanced load
867 	 */
868 	if (ld.x6_op == 0x2)
869 		invala_gr(ld.r1);
870 
871 	return 0;
872 }
873 
874 static int
875 emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
876 {
877 	unsigned long r2;
878 	unsigned int len = 1 << ld.x6_sz;
879 
880 	/*
881 	 * if we get to this handler, Nat bits on both r3 and r2 have already
882 	 * been checked. so we don't need to do it
883 	 *
884 	 * extract the value to be stored
885 	 */
886 	getreg(ld.imm, &r2, NULL, regs);
887 
888 	/*
889 	 * we rely on the macros in unaligned.h for now i.e.,
890 	 * we let the compiler figure out how to read memory gracefully.
891 	 *
892 	 * We need this switch/case because the way the inline function
893 	 * works. The code is optimized by the compiler and looks like
894 	 * a single switch/case.
895 	 */
896 	DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
897 
898 	if (len != 2 && len != 4 && len != 8) {
899 		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
900 		return -1;
901 	}
902 
903 	/* this assumes little-endian byte-order: */
904 	if (copy_to_user((void __user *) ifa, &r2, len))
905 		return -1;
906 
907 	/*
908 	 * stX [r3]=r2,imm(9)
909 	 *
910 	 * NOTE:
911 	 * ld.r3 can never be r0, because r0 would not generate an
912 	 * unaligned access.
913 	 */
914 	if (ld.op == 0x5) {
915 		unsigned long imm;
916 
917 		/*
918 		 * form imm9: [12:6] contain first 7bits
919 		 */
920 		imm = ld.x << 7 | ld.r1;
921 		/*
922 		 * sign extend (8bits) if m set
923 		 */
924 		if (ld.m) imm |= SIGN_EXT9;
925 		/*
926 		 * ifa == r3 (NaT is necessarily cleared)
927 		 */
928 		ifa += imm;
929 
930 		DPRINT("imm=%lx r3=%lx\n", imm, ifa);
931 
932 		setreg(ld.r3, ifa, 0, regs);
933 	}
934 	/*
935 	 * we don't have alat_invalidate_multiple() so we need
936 	 * to do the complete flush :-<<
937 	 */
938 	ia64_invala();
939 
940 	/*
941 	 * stX.rel: use fence instead of release
942 	 */
943 	if (ld.x6_op == 0xd)
944 		mb();
945 
946 	return 0;
947 }
948 
949 /*
950  * floating point operations sizes in bytes
951  */
952 static const unsigned char float_fsz[4]={
953 	10, /* extended precision (e) */
954 	8,  /* integer (8)            */
955 	4,  /* single precision (s)   */
956 	8   /* double precision (d)   */
957 };
958 
959 static inline void
960 mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
961 {
962 	ia64_ldfe(6, init);
963 	ia64_stop();
964 	ia64_stf_spill(final, 6);
965 }
966 
967 static inline void
968 mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
969 {
970 	ia64_ldf8(6, init);
971 	ia64_stop();
972 	ia64_stf_spill(final, 6);
973 }
974 
975 static inline void
976 mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
977 {
978 	ia64_ldfs(6, init);
979 	ia64_stop();
980 	ia64_stf_spill(final, 6);
981 }
982 
983 static inline void
984 mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
985 {
986 	ia64_ldfd(6, init);
987 	ia64_stop();
988 	ia64_stf_spill(final, 6);
989 }
990 
991 static inline void
992 float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
993 {
994 	ia64_ldf_fill(6, init);
995 	ia64_stop();
996 	ia64_stfe(final, 6);
997 }
998 
999 static inline void
1000 float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
1001 {
1002 	ia64_ldf_fill(6, init);
1003 	ia64_stop();
1004 	ia64_stf8(final, 6);
1005 }
1006 
1007 static inline void
1008 float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1009 {
1010 	ia64_ldf_fill(6, init);
1011 	ia64_stop();
1012 	ia64_stfs(final, 6);
1013 }
1014 
1015 static inline void
1016 float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1017 {
1018 	ia64_ldf_fill(6, init);
1019 	ia64_stop();
1020 	ia64_stfd(final, 6);
1021 }
1022 
1023 static int
1024 emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1025 {
1026 	struct ia64_fpreg fpr_init[2];
1027 	struct ia64_fpreg fpr_final[2];
1028 	unsigned long len = float_fsz[ld.x6_sz];
1029 
1030 	/*
1031 	 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1032 	 * higher priority than unaligned faults.
1033 	 *
1034 	 * r0 cannot be found as the base as it would never generate an unaligned
1035 	 * reference.
1036 	 */
1037 
1038 	/*
1039 	 * make sure we get clean buffers
1040 	 */
1041 	memset(&fpr_init, 0, sizeof(fpr_init));
1042 	memset(&fpr_final, 0, sizeof(fpr_final));
1043 
1044 	/*
1045 	 * ldfpX.a: we don't try to emulate anything but we must
1046 	 * invalidate the ALAT entry and execute updates, if any.
1047 	 */
1048 	if (ld.x6_op != 0x2) {
1049 		/*
1050 		 * This assumes little-endian byte-order.  Note that there is no "ldfpe"
1051 		 * instruction:
1052 		 */
1053 		if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
1054 		    || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
1055 			return -1;
1056 
1057 		DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1058 		DDUMP("frp_init =", &fpr_init, 2*len);
1059 		/*
1060 		 * XXX fixme
1061 		 * Could optimize inlines by using ldfpX & 2 spills
1062 		 */
1063 		switch( ld.x6_sz ) {
1064 			case 0:
1065 				mem2float_extended(&fpr_init[0], &fpr_final[0]);
1066 				mem2float_extended(&fpr_init[1], &fpr_final[1]);
1067 				break;
1068 			case 1:
1069 				mem2float_integer(&fpr_init[0], &fpr_final[0]);
1070 				mem2float_integer(&fpr_init[1], &fpr_final[1]);
1071 				break;
1072 			case 2:
1073 				mem2float_single(&fpr_init[0], &fpr_final[0]);
1074 				mem2float_single(&fpr_init[1], &fpr_final[1]);
1075 				break;
1076 			case 3:
1077 				mem2float_double(&fpr_init[0], &fpr_final[0]);
1078 				mem2float_double(&fpr_init[1], &fpr_final[1]);
1079 				break;
1080 		}
1081 		DDUMP("fpr_final =", &fpr_final, 2*len);
1082 		/*
1083 		 * XXX fixme
1084 		 *
1085 		 * A possible optimization would be to drop fpr_final and directly
1086 		 * use the storage from the saved context i.e., the actual final
1087 		 * destination (pt_regs, switch_stack or thread structure).
1088 		 */
1089 		setfpreg(ld.r1, &fpr_final[0], regs);
1090 		setfpreg(ld.imm, &fpr_final[1], regs);
1091 	}
1092 
1093 	/*
1094 	 * Check for updates: only immediate updates are available for this
1095 	 * instruction.
1096 	 */
1097 	if (ld.m) {
1098 		/*
1099 		 * the immediate is implicit given the ldsz of the operation:
1100 		 * single: 8 (2x4) and for  all others it's 16 (2x8)
1101 		 */
1102 		ifa += len<<1;
1103 
1104 		/*
1105 		 * IMPORTANT:
1106 		 * the fact that we force the NaT of r3 to zero is ONLY valid
1107 		 * as long as we don't come here with a ldfpX.s.
1108 		 * For this reason we keep this sanity check
1109 		 */
1110 		if (ld.x6_op == 1 || ld.x6_op == 3)
1111 			printk(KERN_ERR "%s: register update on speculative load pair, error\n",
1112 			       __func__);
1113 
1114 		setreg(ld.r3, ifa, 0, regs);
1115 	}
1116 
1117 	/*
1118 	 * Invalidate ALAT entries, if any, for both registers.
1119 	 */
1120 	if (ld.x6_op == 0x2) {
1121 		invala_fr(ld.r1);
1122 		invala_fr(ld.imm);
1123 	}
1124 	return 0;
1125 }
1126 
1127 
1128 static int
1129 emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1130 {
1131 	struct ia64_fpreg fpr_init;
1132 	struct ia64_fpreg fpr_final;
1133 	unsigned long len = float_fsz[ld.x6_sz];
1134 
1135 	/*
1136 	 * fr0 & fr1 don't need to be checked because Illegal Instruction
1137 	 * faults have higher priority than unaligned faults.
1138 	 *
1139 	 * r0 cannot be found as the base as it would never generate an
1140 	 * unaligned reference.
1141 	 */
1142 
1143 	/*
1144 	 * make sure we get clean buffers
1145 	 */
1146 	memset(&fpr_init,0, sizeof(fpr_init));
1147 	memset(&fpr_final,0, sizeof(fpr_final));
1148 
1149 	/*
1150 	 * ldfX.a we don't try to emulate anything but we must
1151 	 * invalidate the ALAT entry.
1152 	 * See comments in ldX for descriptions on how the various loads are handled.
1153 	 */
1154 	if (ld.x6_op != 0x2) {
1155 		if (copy_from_user(&fpr_init, (void __user *) ifa, len))
1156 			return -1;
1157 
1158 		DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1159 		DDUMP("fpr_init =", &fpr_init, len);
1160 		/*
1161 		 * we only do something for x6_op={0,8,9}
1162 		 */
1163 		switch( ld.x6_sz ) {
1164 			case 0:
1165 				mem2float_extended(&fpr_init, &fpr_final);
1166 				break;
1167 			case 1:
1168 				mem2float_integer(&fpr_init, &fpr_final);
1169 				break;
1170 			case 2:
1171 				mem2float_single(&fpr_init, &fpr_final);
1172 				break;
1173 			case 3:
1174 				mem2float_double(&fpr_init, &fpr_final);
1175 				break;
1176 		}
1177 		DDUMP("fpr_final =", &fpr_final, len);
1178 		/*
1179 		 * XXX fixme
1180 		 *
1181 		 * A possible optimization would be to drop fpr_final and directly
1182 		 * use the storage from the saved context i.e., the actual final
1183 		 * destination (pt_regs, switch_stack or thread structure).
1184 		 */
1185 		setfpreg(ld.r1, &fpr_final, regs);
1186 	}
1187 
1188 	/*
1189 	 * check for updates on any loads
1190 	 */
1191 	if (ld.op == 0x7 || ld.m)
1192 		emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1193 
1194 	/*
1195 	 * invalidate ALAT entry in case of advanced floating point loads
1196 	 */
1197 	if (ld.x6_op == 0x2)
1198 		invala_fr(ld.r1);
1199 
1200 	return 0;
1201 }
1202 
1203 
1204 static int
1205 emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1206 {
1207 	struct ia64_fpreg fpr_init;
1208 	struct ia64_fpreg fpr_final;
1209 	unsigned long len = float_fsz[ld.x6_sz];
1210 
1211 	/*
1212 	 * make sure we get clean buffers
1213 	 */
1214 	memset(&fpr_init,0, sizeof(fpr_init));
1215 	memset(&fpr_final,0, sizeof(fpr_final));
1216 
1217 	/*
1218 	 * if we get to this handler, Nat bits on both r3 and r2 have already
1219 	 * been checked. so we don't need to do it
1220 	 *
1221 	 * extract the value to be stored
1222 	 */
1223 	getfpreg(ld.imm, &fpr_init, regs);
1224 	/*
1225 	 * during this step, we extract the spilled registers from the saved
1226 	 * context i.e., we refill. Then we store (no spill) to temporary
1227 	 * aligned location
1228 	 */
1229 	switch( ld.x6_sz ) {
1230 		case 0:
1231 			float2mem_extended(&fpr_init, &fpr_final);
1232 			break;
1233 		case 1:
1234 			float2mem_integer(&fpr_init, &fpr_final);
1235 			break;
1236 		case 2:
1237 			float2mem_single(&fpr_init, &fpr_final);
1238 			break;
1239 		case 3:
1240 			float2mem_double(&fpr_init, &fpr_final);
1241 			break;
1242 	}
1243 	DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1244 	DDUMP("fpr_init =", &fpr_init, len);
1245 	DDUMP("fpr_final =", &fpr_final, len);
1246 
1247 	if (copy_to_user((void __user *) ifa, &fpr_final, len))
1248 		return -1;
1249 
1250 	/*
1251 	 * stfX [r3]=r2,imm(9)
1252 	 *
1253 	 * NOTE:
1254 	 * ld.r3 can never be r0, because r0 would not generate an
1255 	 * unaligned access.
1256 	 */
1257 	if (ld.op == 0x7) {
1258 		unsigned long imm;
1259 
1260 		/*
1261 		 * form imm9: [12:6] contain first 7bits
1262 		 */
1263 		imm = ld.x << 7 | ld.r1;
1264 		/*
1265 		 * sign extend (8bits) if m set
1266 		 */
1267 		if (ld.m)
1268 			imm |= SIGN_EXT9;
1269 		/*
1270 		 * ifa == r3 (NaT is necessarily cleared)
1271 		 */
1272 		ifa += imm;
1273 
1274 		DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1275 
1276 		setreg(ld.r3, ifa, 0, regs);
1277 	}
1278 	/*
1279 	 * we don't have alat_invalidate_multiple() so we need
1280 	 * to do the complete flush :-<<
1281 	 */
1282 	ia64_invala();
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1289  * eventually fix the program.  However, we don't want to do that for every access so we
1290  * pace it with jiffies.
1291  */
1292 static DEFINE_RATELIMIT_STATE(logging_rate_limit, 5 * HZ, 5);
1293 
1294 void
1295 ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1296 {
1297 	struct ia64_psr *ipsr = ia64_psr(regs);
1298 	mm_segment_t old_fs = get_fs();
1299 	unsigned long bundle[2];
1300 	unsigned long opcode;
1301 	const struct exception_table_entry *eh = NULL;
1302 	union {
1303 		unsigned long l;
1304 		load_store_t insn;
1305 	} u;
1306 	int ret = -1;
1307 
1308 	if (ia64_psr(regs)->be) {
1309 		/* we don't support big-endian accesses */
1310 		if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
1311 			return;
1312 		goto force_sigbus;
1313 	}
1314 
1315 	/*
1316 	 * Treat kernel accesses for which there is an exception handler entry the same as
1317 	 * user-level unaligned accesses.  Otherwise, a clever program could trick this
1318 	 * handler into reading an arbitrary kernel addresses...
1319 	 */
1320 	if (!user_mode(regs))
1321 		eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1322 	if (user_mode(regs) || eh) {
1323 		if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1324 			goto force_sigbus;
1325 
1326 		if (!no_unaligned_warning &&
1327 		    !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1328 		    __ratelimit(&logging_rate_limit))
1329 		{
1330 			char buf[200];	/* comm[] is at most 16 bytes... */
1331 			size_t len;
1332 
1333 			len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
1334 				      "ip=0x%016lx\n\r", current->comm,
1335 				      task_pid_nr(current),
1336 				      ifa, regs->cr_iip + ipsr->ri);
1337 			/*
1338 			 * Don't call tty_write_message() if we're in the kernel; we might
1339 			 * be holding locks...
1340 			 */
1341 			if (user_mode(regs)) {
1342 				struct tty_struct *tty = get_current_tty();
1343 				tty_write_message(tty, buf);
1344 				tty_kref_put(tty);
1345 			}
1346 			buf[len-1] = '\0';	/* drop '\r' */
1347 			/* watch for command names containing %s */
1348 			printk(KERN_WARNING "%s", buf);
1349 		} else {
1350 			if (no_unaligned_warning) {
1351 				printk_once(KERN_WARNING "%s(%d) encountered an "
1352 				       "unaligned exception which required\n"
1353 				       "kernel assistance, which degrades "
1354 				       "the performance of the application.\n"
1355 				       "Unaligned exception warnings have "
1356 				       "been disabled by the system "
1357 				       "administrator\n"
1358 				       "echo 0 > /proc/sys/kernel/ignore-"
1359 				       "unaligned-usertrap to re-enable\n",
1360 				       current->comm, task_pid_nr(current));
1361 			}
1362 		}
1363 	} else {
1364 		if (__ratelimit(&logging_rate_limit)) {
1365 			printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1366 			       ifa, regs->cr_iip + ipsr->ri);
1367 			if (unaligned_dump_stack)
1368 				dump_stack();
1369 		}
1370 		set_fs(KERNEL_DS);
1371 	}
1372 
1373 	DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1374 	       regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1375 
1376 	if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
1377 		goto failure;
1378 
1379 	/*
1380 	 * extract the instruction from the bundle given the slot number
1381 	 */
1382 	switch (ipsr->ri) {
1383 	      default:
1384 	      case 0: u.l = (bundle[0] >>  5); break;
1385 	      case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1386 	      case 2: u.l = (bundle[1] >> 23); break;
1387 	}
1388 	opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1389 
1390 	DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1391 	       "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1392 	       u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1393 
1394 	/*
1395 	 * IMPORTANT:
1396 	 * Notice that the switch statement DOES not cover all possible instructions
1397 	 * that DO generate unaligned references. This is made on purpose because for some
1398 	 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1399 	 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1400 	 * the program will get a signal and die:
1401 	 *
1402 	 *	load/store:
1403 	 *		- ldX.spill
1404 	 *		- stX.spill
1405 	 *	Reason: RNATs are based on addresses
1406 	 *		- ld16
1407 	 *		- st16
1408 	 *	Reason: ld16 and st16 are supposed to occur in a single
1409 	 *		memory op
1410 	 *
1411 	 *	synchronization:
1412 	 *		- cmpxchg
1413 	 *		- fetchadd
1414 	 *		- xchg
1415 	 *	Reason: ATOMIC operations cannot be emulated properly using multiple
1416 	 *	        instructions.
1417 	 *
1418 	 *	speculative loads:
1419 	 *		- ldX.sZ
1420 	 *	Reason: side effects, code must be ready to deal with failure so simpler
1421 	 *		to let the load fail.
1422 	 * ---------------------------------------------------------------------------------
1423 	 * XXX fixme
1424 	 *
1425 	 * I would like to get rid of this switch case and do something
1426 	 * more elegant.
1427 	 */
1428 	switch (opcode) {
1429 	      case LDS_OP:
1430 	      case LDSA_OP:
1431 		if (u.insn.x)
1432 			/* oops, really a semaphore op (cmpxchg, etc) */
1433 			goto failure;
1434 		fallthrough;
1435 	      case LDS_IMM_OP:
1436 	      case LDSA_IMM_OP:
1437 	      case LDFS_OP:
1438 	      case LDFSA_OP:
1439 	      case LDFS_IMM_OP:
1440 		/*
1441 		 * The instruction will be retried with deferred exceptions turned on, and
1442 		 * we should get Nat bit installed
1443 		 *
1444 		 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1445 		 * are actually executed even though the operation failed. So we don't
1446 		 * need to take care of this.
1447 		 */
1448 		DPRINT("forcing PSR_ED\n");
1449 		regs->cr_ipsr |= IA64_PSR_ED;
1450 		goto done;
1451 
1452 	      case LD_OP:
1453 	      case LDA_OP:
1454 	      case LDBIAS_OP:
1455 	      case LDACQ_OP:
1456 	      case LDCCLR_OP:
1457 	      case LDCNC_OP:
1458 	      case LDCCLRACQ_OP:
1459 		if (u.insn.x)
1460 			/* oops, really a semaphore op (cmpxchg, etc) */
1461 			goto failure;
1462 		fallthrough;
1463 	      case LD_IMM_OP:
1464 	      case LDA_IMM_OP:
1465 	      case LDBIAS_IMM_OP:
1466 	      case LDACQ_IMM_OP:
1467 	      case LDCCLR_IMM_OP:
1468 	      case LDCNC_IMM_OP:
1469 	      case LDCCLRACQ_IMM_OP:
1470 		ret = emulate_load_int(ifa, u.insn, regs);
1471 		break;
1472 
1473 	      case ST_OP:
1474 	      case STREL_OP:
1475 		if (u.insn.x)
1476 			/* oops, really a semaphore op (cmpxchg, etc) */
1477 			goto failure;
1478 		fallthrough;
1479 	      case ST_IMM_OP:
1480 	      case STREL_IMM_OP:
1481 		ret = emulate_store_int(ifa, u.insn, regs);
1482 		break;
1483 
1484 	      case LDF_OP:
1485 	      case LDFA_OP:
1486 	      case LDFCCLR_OP:
1487 	      case LDFCNC_OP:
1488 		if (u.insn.x)
1489 			ret = emulate_load_floatpair(ifa, u.insn, regs);
1490 		else
1491 			ret = emulate_load_float(ifa, u.insn, regs);
1492 		break;
1493 
1494 	      case LDF_IMM_OP:
1495 	      case LDFA_IMM_OP:
1496 	      case LDFCCLR_IMM_OP:
1497 	      case LDFCNC_IMM_OP:
1498 		ret = emulate_load_float(ifa, u.insn, regs);
1499 		break;
1500 
1501 	      case STF_OP:
1502 	      case STF_IMM_OP:
1503 		ret = emulate_store_float(ifa, u.insn, regs);
1504 		break;
1505 
1506 	      default:
1507 		goto failure;
1508 	}
1509 	DPRINT("ret=%d\n", ret);
1510 	if (ret)
1511 		goto failure;
1512 
1513 	if (ipsr->ri == 2)
1514 		/*
1515 		 * given today's architecture this case is not likely to happen because a
1516 		 * memory access instruction (M) can never be in the last slot of a
1517 		 * bundle. But let's keep it for now.
1518 		 */
1519 		regs->cr_iip += 16;
1520 	ipsr->ri = (ipsr->ri + 1) & 0x3;
1521 
1522 	DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1523   done:
1524 	set_fs(old_fs);		/* restore original address limit */
1525 	return;
1526 
1527   failure:
1528 	/* something went wrong... */
1529 	if (!user_mode(regs)) {
1530 		if (eh) {
1531 			ia64_handle_exception(regs, eh);
1532 			goto done;
1533 		}
1534 		if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
1535 			return;
1536 		/* NOT_REACHED */
1537 	}
1538   force_sigbus:
1539 	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) ifa,
1540 			0, 0, 0);
1541 	goto done;
1542 }
1543