xref: /openbmc/linux/arch/ia64/kernel/topology.c (revision a1e58bbd)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *  	Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *	Populate cpu cache entries in sysfs for cpu cache info
14  */
15 
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
25 #include <asm/numa.h>
26 #include <asm/cpu.h>
27 
28 static struct ia64_cpu *sysfs_cpus;
29 
30 int arch_register_cpu(int num)
31 {
32 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
33 	/*
34 	 * If CPEI can be re-targetted or if this is not
35 	 * CPEI target, then it is hotpluggable
36 	 */
37 	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
38 		sysfs_cpus[num].cpu.hotpluggable = 1;
39 	map_cpu_to_node(num, node_cpuid[num].nid);
40 #endif
41 
42 	return register_cpu(&sysfs_cpus[num].cpu, num);
43 }
44 
45 #ifdef CONFIG_HOTPLUG_CPU
46 
47 void arch_unregister_cpu(int num)
48 {
49 	unregister_cpu(&sysfs_cpus[num].cpu);
50 	unmap_cpu_from_node(num, cpu_to_node(num));
51 }
52 EXPORT_SYMBOL(arch_register_cpu);
53 EXPORT_SYMBOL(arch_unregister_cpu);
54 #endif /*CONFIG_HOTPLUG_CPU*/
55 
56 
57 static int __init topology_init(void)
58 {
59 	int i, err = 0;
60 
61 #ifdef CONFIG_NUMA
62 	/*
63 	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
64 	 */
65 	for_each_online_node(i) {
66 		if ((err = register_one_node(i)))
67 			goto out;
68 	}
69 #endif
70 
71 	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
72 	if (!sysfs_cpus)
73 		panic("kzalloc in topology_init failed - NR_CPUS too big?");
74 
75 	for_each_present_cpu(i) {
76 		if((err = arch_register_cpu(i)))
77 			goto out;
78 	}
79 out:
80 	return err;
81 }
82 
83 subsys_initcall(topology_init);
84 
85 
86 /*
87  * Export cpu cache information through sysfs
88  */
89 
90 /*
91  *  A bunch of string array to get pretty printing
92  */
93 static const char *cache_types[] = {
94 	"",			/* not used */
95 	"Instruction",
96 	"Data",
97 	"Unified"	/* unified */
98 };
99 
100 static const char *cache_mattrib[]={
101 	"WriteThrough",
102 	"WriteBack",
103 	"",		/* reserved */
104 	""		/* reserved */
105 };
106 
107 struct cache_info {
108 	pal_cache_config_info_t	cci;
109 	cpumask_t shared_cpu_map;
110 	int level;
111 	int type;
112 	struct kobject kobj;
113 };
114 
115 struct cpu_cache_info {
116 	struct cache_info *cache_leaves;
117 	int	num_cache_leaves;
118 	struct kobject kobj;
119 };
120 
121 static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS] __cpuinitdata;
122 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
123 
124 #ifdef CONFIG_SMP
125 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
126 		struct cache_info * this_leaf)
127 {
128 	pal_cache_shared_info_t	csi;
129 	int num_shared, i = 0;
130 	unsigned int j;
131 
132 	if (cpu_data(cpu)->threads_per_core <= 1 &&
133 		cpu_data(cpu)->cores_per_socket <= 1) {
134 		cpu_set(cpu, this_leaf->shared_cpu_map);
135 		return;
136 	}
137 
138 	if (ia64_pal_cache_shared_info(this_leaf->level,
139 					this_leaf->type,
140 					0,
141 					&csi) != PAL_STATUS_SUCCESS)
142 		return;
143 
144 	num_shared = (int) csi.num_shared;
145 	do {
146 		for_each_possible_cpu(j)
147 			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
148 				&& cpu_data(j)->core_id == csi.log1_cid
149 				&& cpu_data(j)->thread_id == csi.log1_tid)
150 				cpu_set(j, this_leaf->shared_cpu_map);
151 
152 		i++;
153 	} while (i < num_shared &&
154 		ia64_pal_cache_shared_info(this_leaf->level,
155 				this_leaf->type,
156 				i,
157 				&csi) == PAL_STATUS_SUCCESS);
158 }
159 #else
160 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
161 		struct cache_info * this_leaf)
162 {
163 	cpu_set(cpu, this_leaf->shared_cpu_map);
164 	return;
165 }
166 #endif
167 
168 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
169 					char *buf)
170 {
171 	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
172 }
173 
174 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
175 					char *buf)
176 {
177 	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
178 }
179 
180 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
181 {
182 	return sprintf(buf,
183 			"%s\n",
184 			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
185 }
186 
187 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
188 {
189 	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
190 }
191 
192 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
193 {
194 	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
195 	number_of_sets /= this_leaf->cci.pcci_assoc;
196 	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
197 
198 	return sprintf(buf, "%u\n", number_of_sets);
199 }
200 
201 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
202 {
203 	ssize_t	len;
204 	cpumask_t shared_cpu_map;
205 
206 	cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
207 	len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
208 	len += sprintf(buf+len, "\n");
209 	return len;
210 }
211 
212 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
213 {
214 	int type = this_leaf->type + this_leaf->cci.pcci_unified;
215 	return sprintf(buf, "%s\n", cache_types[type]);
216 }
217 
218 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
219 {
220 	return sprintf(buf, "%u\n", this_leaf->level);
221 }
222 
223 struct cache_attr {
224 	struct attribute attr;
225 	ssize_t (*show)(struct cache_info *, char *);
226 	ssize_t (*store)(struct cache_info *, const char *, size_t count);
227 };
228 
229 #ifdef define_one_ro
230 	#undef define_one_ro
231 #endif
232 #define define_one_ro(_name) \
233 	static struct cache_attr _name = \
234 __ATTR(_name, 0444, show_##_name, NULL)
235 
236 define_one_ro(level);
237 define_one_ro(type);
238 define_one_ro(coherency_line_size);
239 define_one_ro(ways_of_associativity);
240 define_one_ro(size);
241 define_one_ro(number_of_sets);
242 define_one_ro(shared_cpu_map);
243 define_one_ro(attributes);
244 
245 static struct attribute * cache_default_attrs[] = {
246 	&type.attr,
247 	&level.attr,
248 	&coherency_line_size.attr,
249 	&ways_of_associativity.attr,
250 	&attributes.attr,
251 	&size.attr,
252 	&number_of_sets.attr,
253 	&shared_cpu_map.attr,
254 	NULL
255 };
256 
257 #define to_object(k) container_of(k, struct cache_info, kobj)
258 #define to_attr(a) container_of(a, struct cache_attr, attr)
259 
260 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
261 {
262 	struct cache_attr *fattr = to_attr(attr);
263 	struct cache_info *this_leaf = to_object(kobj);
264 	ssize_t ret;
265 
266 	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
267 	return ret;
268 }
269 
270 static struct sysfs_ops cache_sysfs_ops = {
271 	.show   = cache_show
272 };
273 
274 static struct kobj_type cache_ktype = {
275 	.sysfs_ops	= &cache_sysfs_ops,
276 	.default_attrs	= cache_default_attrs,
277 };
278 
279 static struct kobj_type cache_ktype_percpu_entry = {
280 	.sysfs_ops	= &cache_sysfs_ops,
281 };
282 
283 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
284 {
285 	kfree(all_cpu_cache_info[cpu].cache_leaves);
286 	all_cpu_cache_info[cpu].cache_leaves = NULL;
287 	all_cpu_cache_info[cpu].num_cache_leaves = 0;
288 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
289 	return;
290 }
291 
292 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
293 {
294 	u64 i, levels, unique_caches;
295 	pal_cache_config_info_t cci;
296 	int j;
297 	s64 status;
298 	struct cache_info *this_cache;
299 	int num_cache_leaves = 0;
300 
301 	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
302 		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
303 		return -1;
304 	}
305 
306 	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
307 			GFP_KERNEL);
308 	if (this_cache == NULL)
309 		return -ENOMEM;
310 
311 	for (i=0; i < levels; i++) {
312 		for (j=2; j >0 ; j--) {
313 			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
314 					PAL_STATUS_SUCCESS)
315 				continue;
316 
317 			this_cache[num_cache_leaves].cci = cci;
318 			this_cache[num_cache_leaves].level = i + 1;
319 			this_cache[num_cache_leaves].type = j;
320 
321 			cache_shared_cpu_map_setup(cpu,
322 					&this_cache[num_cache_leaves]);
323 			num_cache_leaves ++;
324 		}
325 	}
326 
327 	all_cpu_cache_info[cpu].cache_leaves = this_cache;
328 	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
329 
330 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
331 
332 	return 0;
333 }
334 
335 /* Add cache interface for CPU device */
336 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
337 {
338 	unsigned int cpu = sys_dev->id;
339 	unsigned long i, j;
340 	struct cache_info *this_object;
341 	int retval = 0;
342 	cpumask_t oldmask;
343 
344 	if (all_cpu_cache_info[cpu].kobj.parent)
345 		return 0;
346 
347 	oldmask = current->cpus_allowed;
348 	retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
349 	if (unlikely(retval))
350 		return retval;
351 
352 	retval = cpu_cache_sysfs_init(cpu);
353 	set_cpus_allowed(current, oldmask);
354 	if (unlikely(retval < 0))
355 		return retval;
356 
357 	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
358 				      &cache_ktype_percpu_entry, &sys_dev->kobj,
359 				      "%s", "cache");
360 
361 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
362 		this_object = LEAF_KOBJECT_PTR(cpu,i);
363 		retval = kobject_init_and_add(&(this_object->kobj),
364 					      &cache_ktype,
365 					      &all_cpu_cache_info[cpu].kobj,
366 					      "index%1lu", i);
367 		if (unlikely(retval)) {
368 			for (j = 0; j < i; j++) {
369 				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
370 			}
371 			kobject_put(&all_cpu_cache_info[cpu].kobj);
372 			cpu_cache_sysfs_exit(cpu);
373 			break;
374 		}
375 		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
376 	}
377 	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
378 	return retval;
379 }
380 
381 /* Remove cache interface for CPU device */
382 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
383 {
384 	unsigned int cpu = sys_dev->id;
385 	unsigned long i;
386 
387 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
388 		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
389 
390 	if (all_cpu_cache_info[cpu].kobj.parent) {
391 		kobject_put(&all_cpu_cache_info[cpu].kobj);
392 		memset(&all_cpu_cache_info[cpu].kobj,
393 			0,
394 			sizeof(struct kobject));
395 	}
396 
397 	cpu_cache_sysfs_exit(cpu);
398 
399 	return 0;
400 }
401 
402 /*
403  * When a cpu is hot-plugged, do a check and initiate
404  * cache kobject if necessary
405  */
406 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
407 		unsigned long action, void *hcpu)
408 {
409 	unsigned int cpu = (unsigned long)hcpu;
410 	struct sys_device *sys_dev;
411 
412 	sys_dev = get_cpu_sysdev(cpu);
413 	switch (action) {
414 	case CPU_ONLINE:
415 	case CPU_ONLINE_FROZEN:
416 		cache_add_dev(sys_dev);
417 		break;
418 	case CPU_DEAD:
419 	case CPU_DEAD_FROZEN:
420 		cache_remove_dev(sys_dev);
421 		break;
422 	}
423 	return NOTIFY_OK;
424 }
425 
426 static struct notifier_block __cpuinitdata cache_cpu_notifier =
427 {
428 	.notifier_call = cache_cpu_callback
429 };
430 
431 static int __init cache_sysfs_init(void)
432 {
433 	int i;
434 
435 	for_each_online_cpu(i) {
436 		struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
437 		cache_add_dev(sys_dev);
438 	}
439 
440 	register_hotcpu_notifier(&cache_cpu_notifier);
441 
442 	return 0;
443 }
444 
445 device_initcall(cache_sysfs_init);
446 
447