xref: /openbmc/linux/arch/ia64/kernel/topology.c (revision 869b6ca39c08c5b10eeb29d4b3c4bc433bf8ba5e)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which are used on
7  * NUMA machines with contiguous memory.
8  * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
9  * Populate cpu entries in sysfs for non-numa systems as well
10  *  	Intel Corporation - Ashok Raj
11  * 02/27/2006 Zhang, Yanmin
12  *	Populate cpu cache entries in sysfs for cpu cache info
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/node.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/memblock.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <linux/export.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
28 
29 static struct ia64_cpu *sysfs_cpus;
30 
31 void arch_fix_phys_package_id(int num, u32 slot)
32 {
33 #ifdef CONFIG_SMP
34 	if (cpu_data(num)->socket_id == -1)
35 		cpu_data(num)->socket_id = slot;
36 #endif
37 }
38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
39 
40 
41 #ifdef CONFIG_HOTPLUG_CPU
42 int __ref arch_register_cpu(int num)
43 {
44 	/*
45 	 * If CPEI can be re-targeted or if this is not
46 	 * CPEI target, then it is hotpluggable
47 	 */
48 	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49 		sysfs_cpus[num].cpu.hotpluggable = 1;
50 	map_cpu_to_node(num, node_cpuid[num].nid);
51 	return register_cpu(&sysfs_cpus[num].cpu, num);
52 }
53 EXPORT_SYMBOL(arch_register_cpu);
54 
55 void __ref arch_unregister_cpu(int num)
56 {
57 	unregister_cpu(&sysfs_cpus[num].cpu);
58 	unmap_cpu_from_node(num, cpu_to_node(num));
59 }
60 EXPORT_SYMBOL(arch_unregister_cpu);
61 #else
62 static int __init arch_register_cpu(int num)
63 {
64 	return register_cpu(&sysfs_cpus[num].cpu, num);
65 }
66 #endif /*CONFIG_HOTPLUG_CPU*/
67 
68 
69 static int __init topology_init(void)
70 {
71 	int i, err = 0;
72 
73 #ifdef CONFIG_NUMA
74 	/*
75 	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
76 	 */
77 	for_each_online_node(i) {
78 		if ((err = register_one_node(i)))
79 			goto out;
80 	}
81 #endif
82 
83 	sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
84 	if (!sysfs_cpus)
85 		panic("kzalloc in topology_init failed - NR_CPUS too big?");
86 
87 	for_each_present_cpu(i) {
88 		if((err = arch_register_cpu(i)))
89 			goto out;
90 	}
91 out:
92 	return err;
93 }
94 
95 subsys_initcall(topology_init);
96 
97 
98 /*
99  * Export cpu cache information through sysfs
100  */
101 
102 /*
103  *  A bunch of string array to get pretty printing
104  */
105 static const char *cache_types[] = {
106 	"",			/* not used */
107 	"Instruction",
108 	"Data",
109 	"Unified"	/* unified */
110 };
111 
112 static const char *cache_mattrib[]={
113 	"WriteThrough",
114 	"WriteBack",
115 	"",		/* reserved */
116 	""		/* reserved */
117 };
118 
119 struct cache_info {
120 	pal_cache_config_info_t	cci;
121 	cpumask_t shared_cpu_map;
122 	int level;
123 	int type;
124 	struct kobject kobj;
125 };
126 
127 struct cpu_cache_info {
128 	struct cache_info *cache_leaves;
129 	int	num_cache_leaves;
130 	struct kobject kobj;
131 };
132 
133 static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS];
134 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
135 
136 #ifdef CONFIG_SMP
137 static void cache_shared_cpu_map_setup(unsigned int cpu,
138 		struct cache_info * this_leaf)
139 {
140 	pal_cache_shared_info_t	csi;
141 	int num_shared, i = 0;
142 	unsigned int j;
143 
144 	if (cpu_data(cpu)->threads_per_core <= 1 &&
145 		cpu_data(cpu)->cores_per_socket <= 1) {
146 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
147 		return;
148 	}
149 
150 	if (ia64_pal_cache_shared_info(this_leaf->level,
151 					this_leaf->type,
152 					0,
153 					&csi) != PAL_STATUS_SUCCESS)
154 		return;
155 
156 	num_shared = (int) csi.num_shared;
157 	do {
158 		for_each_possible_cpu(j)
159 			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
160 				&& cpu_data(j)->core_id == csi.log1_cid
161 				&& cpu_data(j)->thread_id == csi.log1_tid)
162 				cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
163 
164 		i++;
165 	} while (i < num_shared &&
166 		ia64_pal_cache_shared_info(this_leaf->level,
167 				this_leaf->type,
168 				i,
169 				&csi) == PAL_STATUS_SUCCESS);
170 }
171 #else
172 static void cache_shared_cpu_map_setup(unsigned int cpu,
173 		struct cache_info * this_leaf)
174 {
175 	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
176 	return;
177 }
178 #endif
179 
180 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
181 					char *buf)
182 {
183 	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
184 }
185 
186 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
187 					char *buf)
188 {
189 	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
190 }
191 
192 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
193 {
194 	return sprintf(buf,
195 			"%s\n",
196 			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
197 }
198 
199 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
200 {
201 	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
202 }
203 
204 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
205 {
206 	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
207 	number_of_sets /= this_leaf->cci.pcci_assoc;
208 	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
209 
210 	return sprintf(buf, "%u\n", number_of_sets);
211 }
212 
213 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
214 {
215 	cpumask_t shared_cpu_map;
216 
217 	cpumask_and(&shared_cpu_map,
218 				&this_leaf->shared_cpu_map, cpu_online_mask);
219 	return scnprintf(buf, PAGE_SIZE, "%*pb\n",
220 			 cpumask_pr_args(&shared_cpu_map));
221 }
222 
223 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
224 {
225 	int type = this_leaf->type + this_leaf->cci.pcci_unified;
226 	return sprintf(buf, "%s\n", cache_types[type]);
227 }
228 
229 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
230 {
231 	return sprintf(buf, "%u\n", this_leaf->level);
232 }
233 
234 struct cache_attr {
235 	struct attribute attr;
236 	ssize_t (*show)(struct cache_info *, char *);
237 	ssize_t (*store)(struct cache_info *, const char *, size_t count);
238 };
239 
240 #ifdef define_one_ro
241 	#undef define_one_ro
242 #endif
243 #define define_one_ro(_name) \
244 	static struct cache_attr _name = \
245 __ATTR(_name, 0444, show_##_name, NULL)
246 
247 define_one_ro(level);
248 define_one_ro(type);
249 define_one_ro(coherency_line_size);
250 define_one_ro(ways_of_associativity);
251 define_one_ro(size);
252 define_one_ro(number_of_sets);
253 define_one_ro(shared_cpu_map);
254 define_one_ro(attributes);
255 
256 static struct attribute * cache_default_attrs[] = {
257 	&type.attr,
258 	&level.attr,
259 	&coherency_line_size.attr,
260 	&ways_of_associativity.attr,
261 	&attributes.attr,
262 	&size.attr,
263 	&number_of_sets.attr,
264 	&shared_cpu_map.attr,
265 	NULL
266 };
267 
268 #define to_object(k) container_of(k, struct cache_info, kobj)
269 #define to_attr(a) container_of(a, struct cache_attr, attr)
270 
271 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
272 {
273 	struct cache_attr *fattr = to_attr(attr);
274 	struct cache_info *this_leaf = to_object(kobj);
275 	ssize_t ret;
276 
277 	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
278 	return ret;
279 }
280 
281 static const struct sysfs_ops cache_sysfs_ops = {
282 	.show   = ia64_cache_show
283 };
284 
285 static struct kobj_type cache_ktype = {
286 	.sysfs_ops	= &cache_sysfs_ops,
287 	.default_attrs	= cache_default_attrs,
288 };
289 
290 static struct kobj_type cache_ktype_percpu_entry = {
291 	.sysfs_ops	= &cache_sysfs_ops,
292 };
293 
294 static void cpu_cache_sysfs_exit(unsigned int cpu)
295 {
296 	kfree(all_cpu_cache_info[cpu].cache_leaves);
297 	all_cpu_cache_info[cpu].cache_leaves = NULL;
298 	all_cpu_cache_info[cpu].num_cache_leaves = 0;
299 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
300 	return;
301 }
302 
303 static int cpu_cache_sysfs_init(unsigned int cpu)
304 {
305 	unsigned long i, levels, unique_caches;
306 	pal_cache_config_info_t cci;
307 	int j;
308 	long status;
309 	struct cache_info *this_cache;
310 	int num_cache_leaves = 0;
311 
312 	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
313 		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
314 		return -1;
315 	}
316 
317 	this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
318 			   GFP_KERNEL);
319 	if (this_cache == NULL)
320 		return -ENOMEM;
321 
322 	for (i=0; i < levels; i++) {
323 		for (j=2; j >0 ; j--) {
324 			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
325 					PAL_STATUS_SUCCESS)
326 				continue;
327 
328 			this_cache[num_cache_leaves].cci = cci;
329 			this_cache[num_cache_leaves].level = i + 1;
330 			this_cache[num_cache_leaves].type = j;
331 
332 			cache_shared_cpu_map_setup(cpu,
333 					&this_cache[num_cache_leaves]);
334 			num_cache_leaves ++;
335 		}
336 	}
337 
338 	all_cpu_cache_info[cpu].cache_leaves = this_cache;
339 	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
340 
341 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
342 
343 	return 0;
344 }
345 
346 /* Add cache interface for CPU device */
347 static int cache_add_dev(unsigned int cpu)
348 {
349 	struct device *sys_dev = get_cpu_device(cpu);
350 	unsigned long i, j;
351 	struct cache_info *this_object;
352 	int retval = 0;
353 
354 	if (all_cpu_cache_info[cpu].kobj.parent)
355 		return 0;
356 
357 
358 	retval = cpu_cache_sysfs_init(cpu);
359 	if (unlikely(retval < 0))
360 		return retval;
361 
362 	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
363 				      &cache_ktype_percpu_entry, &sys_dev->kobj,
364 				      "%s", "cache");
365 	if (unlikely(retval < 0)) {
366 		cpu_cache_sysfs_exit(cpu);
367 		return retval;
368 	}
369 
370 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
371 		this_object = LEAF_KOBJECT_PTR(cpu,i);
372 		retval = kobject_init_and_add(&(this_object->kobj),
373 					      &cache_ktype,
374 					      &all_cpu_cache_info[cpu].kobj,
375 					      "index%1lu", i);
376 		if (unlikely(retval)) {
377 			for (j = 0; j < i; j++) {
378 				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
379 			}
380 			kobject_put(&all_cpu_cache_info[cpu].kobj);
381 			cpu_cache_sysfs_exit(cpu);
382 			return retval;
383 		}
384 		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
385 	}
386 	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
387 	return retval;
388 }
389 
390 /* Remove cache interface for CPU device */
391 static int cache_remove_dev(unsigned int cpu)
392 {
393 	unsigned long i;
394 
395 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
396 		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
397 
398 	if (all_cpu_cache_info[cpu].kobj.parent) {
399 		kobject_put(&all_cpu_cache_info[cpu].kobj);
400 		memset(&all_cpu_cache_info[cpu].kobj,
401 			0,
402 			sizeof(struct kobject));
403 	}
404 
405 	cpu_cache_sysfs_exit(cpu);
406 
407 	return 0;
408 }
409 
410 static int __init cache_sysfs_init(void)
411 {
412 	int ret;
413 
414 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
415 				cache_add_dev, cache_remove_dev);
416 	WARN_ON(ret < 0);
417 	return 0;
418 }
419 device_initcall(cache_sysfs_init);
420