1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * This file contains NUMA specific variables and functions which can 7 * be split away from DISCONTIGMEM and are used on NUMA machines with 8 * contiguous memory. 9 * 2002/08/07 Erich Focht <efocht@ess.nec.de> 10 * Populate cpu entries in sysfs for non-numa systems as well 11 * Intel Corporation - Ashok Raj 12 * 02/27/2006 Zhang, Yanmin 13 * Populate cpu cache entries in sysfs for cpu cache info 14 */ 15 16 #include <linux/cpu.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/node.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/memblock.h> 23 #include <linux/nodemask.h> 24 #include <linux/notifier.h> 25 #include <linux/export.h> 26 #include <asm/mmzone.h> 27 #include <asm/numa.h> 28 #include <asm/cpu.h> 29 30 static struct ia64_cpu *sysfs_cpus; 31 32 void arch_fix_phys_package_id(int num, u32 slot) 33 { 34 #ifdef CONFIG_SMP 35 if (cpu_data(num)->socket_id == -1) 36 cpu_data(num)->socket_id = slot; 37 #endif 38 } 39 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id); 40 41 42 #ifdef CONFIG_HOTPLUG_CPU 43 int __ref arch_register_cpu(int num) 44 { 45 /* 46 * If CPEI can be re-targeted or if this is not 47 * CPEI target, then it is hotpluggable 48 */ 49 if (can_cpei_retarget() || !is_cpu_cpei_target(num)) 50 sysfs_cpus[num].cpu.hotpluggable = 1; 51 map_cpu_to_node(num, node_cpuid[num].nid); 52 return register_cpu(&sysfs_cpus[num].cpu, num); 53 } 54 EXPORT_SYMBOL(arch_register_cpu); 55 56 void __ref arch_unregister_cpu(int num) 57 { 58 unregister_cpu(&sysfs_cpus[num].cpu); 59 unmap_cpu_from_node(num, cpu_to_node(num)); 60 } 61 EXPORT_SYMBOL(arch_unregister_cpu); 62 #else 63 static int __init arch_register_cpu(int num) 64 { 65 return register_cpu(&sysfs_cpus[num].cpu, num); 66 } 67 #endif /*CONFIG_HOTPLUG_CPU*/ 68 69 70 static int __init topology_init(void) 71 { 72 int i, err = 0; 73 74 #ifdef CONFIG_NUMA 75 /* 76 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes? 77 */ 78 for_each_online_node(i) { 79 if ((err = register_one_node(i))) 80 goto out; 81 } 82 #endif 83 84 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL); 85 if (!sysfs_cpus) 86 panic("kzalloc in topology_init failed - NR_CPUS too big?"); 87 88 for_each_present_cpu(i) { 89 if((err = arch_register_cpu(i))) 90 goto out; 91 } 92 out: 93 return err; 94 } 95 96 subsys_initcall(topology_init); 97 98 99 /* 100 * Export cpu cache information through sysfs 101 */ 102 103 /* 104 * A bunch of string array to get pretty printing 105 */ 106 static const char *cache_types[] = { 107 "", /* not used */ 108 "Instruction", 109 "Data", 110 "Unified" /* unified */ 111 }; 112 113 static const char *cache_mattrib[]={ 114 "WriteThrough", 115 "WriteBack", 116 "", /* reserved */ 117 "" /* reserved */ 118 }; 119 120 struct cache_info { 121 pal_cache_config_info_t cci; 122 cpumask_t shared_cpu_map; 123 int level; 124 int type; 125 struct kobject kobj; 126 }; 127 128 struct cpu_cache_info { 129 struct cache_info *cache_leaves; 130 int num_cache_leaves; 131 struct kobject kobj; 132 }; 133 134 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS]; 135 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y]) 136 137 #ifdef CONFIG_SMP 138 static void cache_shared_cpu_map_setup(unsigned int cpu, 139 struct cache_info * this_leaf) 140 { 141 pal_cache_shared_info_t csi; 142 int num_shared, i = 0; 143 unsigned int j; 144 145 if (cpu_data(cpu)->threads_per_core <= 1 && 146 cpu_data(cpu)->cores_per_socket <= 1) { 147 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 148 return; 149 } 150 151 if (ia64_pal_cache_shared_info(this_leaf->level, 152 this_leaf->type, 153 0, 154 &csi) != PAL_STATUS_SUCCESS) 155 return; 156 157 num_shared = (int) csi.num_shared; 158 do { 159 for_each_possible_cpu(j) 160 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id 161 && cpu_data(j)->core_id == csi.log1_cid 162 && cpu_data(j)->thread_id == csi.log1_tid) 163 cpumask_set_cpu(j, &this_leaf->shared_cpu_map); 164 165 i++; 166 } while (i < num_shared && 167 ia64_pal_cache_shared_info(this_leaf->level, 168 this_leaf->type, 169 i, 170 &csi) == PAL_STATUS_SUCCESS); 171 } 172 #else 173 static void cache_shared_cpu_map_setup(unsigned int cpu, 174 struct cache_info * this_leaf) 175 { 176 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 177 return; 178 } 179 #endif 180 181 static ssize_t show_coherency_line_size(struct cache_info *this_leaf, 182 char *buf) 183 { 184 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size); 185 } 186 187 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf, 188 char *buf) 189 { 190 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc); 191 } 192 193 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf) 194 { 195 return sprintf(buf, 196 "%s\n", 197 cache_mattrib[this_leaf->cci.pcci_cache_attr]); 198 } 199 200 static ssize_t show_size(struct cache_info *this_leaf, char *buf) 201 { 202 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024); 203 } 204 205 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf) 206 { 207 unsigned number_of_sets = this_leaf->cci.pcci_cache_size; 208 number_of_sets /= this_leaf->cci.pcci_assoc; 209 number_of_sets /= 1 << this_leaf->cci.pcci_line_size; 210 211 return sprintf(buf, "%u\n", number_of_sets); 212 } 213 214 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf) 215 { 216 cpumask_t shared_cpu_map; 217 218 cpumask_and(&shared_cpu_map, 219 &this_leaf->shared_cpu_map, cpu_online_mask); 220 return scnprintf(buf, PAGE_SIZE, "%*pb\n", 221 cpumask_pr_args(&shared_cpu_map)); 222 } 223 224 static ssize_t show_type(struct cache_info *this_leaf, char *buf) 225 { 226 int type = this_leaf->type + this_leaf->cci.pcci_unified; 227 return sprintf(buf, "%s\n", cache_types[type]); 228 } 229 230 static ssize_t show_level(struct cache_info *this_leaf, char *buf) 231 { 232 return sprintf(buf, "%u\n", this_leaf->level); 233 } 234 235 struct cache_attr { 236 struct attribute attr; 237 ssize_t (*show)(struct cache_info *, char *); 238 ssize_t (*store)(struct cache_info *, const char *, size_t count); 239 }; 240 241 #ifdef define_one_ro 242 #undef define_one_ro 243 #endif 244 #define define_one_ro(_name) \ 245 static struct cache_attr _name = \ 246 __ATTR(_name, 0444, show_##_name, NULL) 247 248 define_one_ro(level); 249 define_one_ro(type); 250 define_one_ro(coherency_line_size); 251 define_one_ro(ways_of_associativity); 252 define_one_ro(size); 253 define_one_ro(number_of_sets); 254 define_one_ro(shared_cpu_map); 255 define_one_ro(attributes); 256 257 static struct attribute * cache_default_attrs[] = { 258 &type.attr, 259 &level.attr, 260 &coherency_line_size.attr, 261 &ways_of_associativity.attr, 262 &attributes.attr, 263 &size.attr, 264 &number_of_sets.attr, 265 &shared_cpu_map.attr, 266 NULL 267 }; 268 269 #define to_object(k) container_of(k, struct cache_info, kobj) 270 #define to_attr(a) container_of(a, struct cache_attr, attr) 271 272 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf) 273 { 274 struct cache_attr *fattr = to_attr(attr); 275 struct cache_info *this_leaf = to_object(kobj); 276 ssize_t ret; 277 278 ret = fattr->show ? fattr->show(this_leaf, buf) : 0; 279 return ret; 280 } 281 282 static const struct sysfs_ops cache_sysfs_ops = { 283 .show = ia64_cache_show 284 }; 285 286 static struct kobj_type cache_ktype = { 287 .sysfs_ops = &cache_sysfs_ops, 288 .default_attrs = cache_default_attrs, 289 }; 290 291 static struct kobj_type cache_ktype_percpu_entry = { 292 .sysfs_ops = &cache_sysfs_ops, 293 }; 294 295 static void cpu_cache_sysfs_exit(unsigned int cpu) 296 { 297 kfree(all_cpu_cache_info[cpu].cache_leaves); 298 all_cpu_cache_info[cpu].cache_leaves = NULL; 299 all_cpu_cache_info[cpu].num_cache_leaves = 0; 300 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 301 return; 302 } 303 304 static int cpu_cache_sysfs_init(unsigned int cpu) 305 { 306 unsigned long i, levels, unique_caches; 307 pal_cache_config_info_t cci; 308 int j; 309 long status; 310 struct cache_info *this_cache; 311 int num_cache_leaves = 0; 312 313 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { 314 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); 315 return -1; 316 } 317 318 this_cache=kcalloc(unique_caches, sizeof(struct cache_info), 319 GFP_KERNEL); 320 if (this_cache == NULL) 321 return -ENOMEM; 322 323 for (i=0; i < levels; i++) { 324 for (j=2; j >0 ; j--) { 325 if ((status=ia64_pal_cache_config_info(i,j, &cci)) != 326 PAL_STATUS_SUCCESS) 327 continue; 328 329 this_cache[num_cache_leaves].cci = cci; 330 this_cache[num_cache_leaves].level = i + 1; 331 this_cache[num_cache_leaves].type = j; 332 333 cache_shared_cpu_map_setup(cpu, 334 &this_cache[num_cache_leaves]); 335 num_cache_leaves ++; 336 } 337 } 338 339 all_cpu_cache_info[cpu].cache_leaves = this_cache; 340 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves; 341 342 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 343 344 return 0; 345 } 346 347 /* Add cache interface for CPU device */ 348 static int cache_add_dev(unsigned int cpu) 349 { 350 struct device *sys_dev = get_cpu_device(cpu); 351 unsigned long i, j; 352 struct cache_info *this_object; 353 int retval = 0; 354 355 if (all_cpu_cache_info[cpu].kobj.parent) 356 return 0; 357 358 359 retval = cpu_cache_sysfs_init(cpu); 360 if (unlikely(retval < 0)) 361 return retval; 362 363 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj, 364 &cache_ktype_percpu_entry, &sys_dev->kobj, 365 "%s", "cache"); 366 if (unlikely(retval < 0)) { 367 cpu_cache_sysfs_exit(cpu); 368 return retval; 369 } 370 371 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) { 372 this_object = LEAF_KOBJECT_PTR(cpu,i); 373 retval = kobject_init_and_add(&(this_object->kobj), 374 &cache_ktype, 375 &all_cpu_cache_info[cpu].kobj, 376 "index%1lu", i); 377 if (unlikely(retval)) { 378 for (j = 0; j < i; j++) { 379 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj)); 380 } 381 kobject_put(&all_cpu_cache_info[cpu].kobj); 382 cpu_cache_sysfs_exit(cpu); 383 return retval; 384 } 385 kobject_uevent(&(this_object->kobj), KOBJ_ADD); 386 } 387 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD); 388 return retval; 389 } 390 391 /* Remove cache interface for CPU device */ 392 static int cache_remove_dev(unsigned int cpu) 393 { 394 unsigned long i; 395 396 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) 397 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj)); 398 399 if (all_cpu_cache_info[cpu].kobj.parent) { 400 kobject_put(&all_cpu_cache_info[cpu].kobj); 401 memset(&all_cpu_cache_info[cpu].kobj, 402 0, 403 sizeof(struct kobject)); 404 } 405 406 cpu_cache_sysfs_exit(cpu); 407 408 return 0; 409 } 410 411 static int __init cache_sysfs_init(void) 412 { 413 int ret; 414 415 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online", 416 cache_add_dev, cache_remove_dev); 417 WARN_ON(ret < 0); 418 return 0; 419 } 420 device_initcall(cache_sysfs_init); 421