xref: /openbmc/linux/arch/ia64/kernel/topology.c (revision 8365a898)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *  	Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *	Populate cpu cache entries in sysfs for cpu cache info
14  */
15 
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/memblock.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <asm/mmzone.h>
27 #include <asm/numa.h>
28 #include <asm/cpu.h>
29 
30 static struct ia64_cpu *sysfs_cpus;
31 
32 void arch_fix_phys_package_id(int num, u32 slot)
33 {
34 #ifdef CONFIG_SMP
35 	if (cpu_data(num)->socket_id == -1)
36 		cpu_data(num)->socket_id = slot;
37 #endif
38 }
39 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
40 
41 
42 #ifdef CONFIG_HOTPLUG_CPU
43 int __ref arch_register_cpu(int num)
44 {
45 	/*
46 	 * If CPEI can be re-targeted or if this is not
47 	 * CPEI target, then it is hotpluggable
48 	 */
49 	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
50 		sysfs_cpus[num].cpu.hotpluggable = 1;
51 	map_cpu_to_node(num, node_cpuid[num].nid);
52 	return register_cpu(&sysfs_cpus[num].cpu, num);
53 }
54 EXPORT_SYMBOL(arch_register_cpu);
55 
56 void __ref arch_unregister_cpu(int num)
57 {
58 	unregister_cpu(&sysfs_cpus[num].cpu);
59 	unmap_cpu_from_node(num, cpu_to_node(num));
60 }
61 EXPORT_SYMBOL(arch_unregister_cpu);
62 #else
63 static int __init arch_register_cpu(int num)
64 {
65 	return register_cpu(&sysfs_cpus[num].cpu, num);
66 }
67 #endif /*CONFIG_HOTPLUG_CPU*/
68 
69 
70 static int __init topology_init(void)
71 {
72 	int i, err = 0;
73 
74 #ifdef CONFIG_NUMA
75 	/*
76 	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
77 	 */
78 	for_each_online_node(i) {
79 		if ((err = register_one_node(i)))
80 			goto out;
81 	}
82 #endif
83 
84 	sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
85 	if (!sysfs_cpus)
86 		panic("kzalloc in topology_init failed - NR_CPUS too big?");
87 
88 	for_each_present_cpu(i) {
89 		if((err = arch_register_cpu(i)))
90 			goto out;
91 	}
92 out:
93 	return err;
94 }
95 
96 subsys_initcall(topology_init);
97 
98 
99 /*
100  * Export cpu cache information through sysfs
101  */
102 
103 /*
104  *  A bunch of string array to get pretty printing
105  */
106 static const char *cache_types[] = {
107 	"",			/* not used */
108 	"Instruction",
109 	"Data",
110 	"Unified"	/* unified */
111 };
112 
113 static const char *cache_mattrib[]={
114 	"WriteThrough",
115 	"WriteBack",
116 	"",		/* reserved */
117 	""		/* reserved */
118 };
119 
120 struct cache_info {
121 	pal_cache_config_info_t	cci;
122 	cpumask_t shared_cpu_map;
123 	int level;
124 	int type;
125 	struct kobject kobj;
126 };
127 
128 struct cpu_cache_info {
129 	struct cache_info *cache_leaves;
130 	int	num_cache_leaves;
131 	struct kobject kobj;
132 };
133 
134 static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS];
135 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
136 
137 #ifdef CONFIG_SMP
138 static void cache_shared_cpu_map_setup(unsigned int cpu,
139 		struct cache_info * this_leaf)
140 {
141 	pal_cache_shared_info_t	csi;
142 	int num_shared, i = 0;
143 	unsigned int j;
144 
145 	if (cpu_data(cpu)->threads_per_core <= 1 &&
146 		cpu_data(cpu)->cores_per_socket <= 1) {
147 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
148 		return;
149 	}
150 
151 	if (ia64_pal_cache_shared_info(this_leaf->level,
152 					this_leaf->type,
153 					0,
154 					&csi) != PAL_STATUS_SUCCESS)
155 		return;
156 
157 	num_shared = (int) csi.num_shared;
158 	do {
159 		for_each_possible_cpu(j)
160 			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
161 				&& cpu_data(j)->core_id == csi.log1_cid
162 				&& cpu_data(j)->thread_id == csi.log1_tid)
163 				cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
164 
165 		i++;
166 	} while (i < num_shared &&
167 		ia64_pal_cache_shared_info(this_leaf->level,
168 				this_leaf->type,
169 				i,
170 				&csi) == PAL_STATUS_SUCCESS);
171 }
172 #else
173 static void cache_shared_cpu_map_setup(unsigned int cpu,
174 		struct cache_info * this_leaf)
175 {
176 	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
177 	return;
178 }
179 #endif
180 
181 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
182 					char *buf)
183 {
184 	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
185 }
186 
187 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
188 					char *buf)
189 {
190 	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
191 }
192 
193 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
194 {
195 	return sprintf(buf,
196 			"%s\n",
197 			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
198 }
199 
200 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
201 {
202 	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
203 }
204 
205 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
206 {
207 	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
208 	number_of_sets /= this_leaf->cci.pcci_assoc;
209 	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
210 
211 	return sprintf(buf, "%u\n", number_of_sets);
212 }
213 
214 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
215 {
216 	cpumask_t shared_cpu_map;
217 
218 	cpumask_and(&shared_cpu_map,
219 				&this_leaf->shared_cpu_map, cpu_online_mask);
220 	return scnprintf(buf, PAGE_SIZE, "%*pb\n",
221 			 cpumask_pr_args(&shared_cpu_map));
222 }
223 
224 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
225 {
226 	int type = this_leaf->type + this_leaf->cci.pcci_unified;
227 	return sprintf(buf, "%s\n", cache_types[type]);
228 }
229 
230 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
231 {
232 	return sprintf(buf, "%u\n", this_leaf->level);
233 }
234 
235 struct cache_attr {
236 	struct attribute attr;
237 	ssize_t (*show)(struct cache_info *, char *);
238 	ssize_t (*store)(struct cache_info *, const char *, size_t count);
239 };
240 
241 #ifdef define_one_ro
242 	#undef define_one_ro
243 #endif
244 #define define_one_ro(_name) \
245 	static struct cache_attr _name = \
246 __ATTR(_name, 0444, show_##_name, NULL)
247 
248 define_one_ro(level);
249 define_one_ro(type);
250 define_one_ro(coherency_line_size);
251 define_one_ro(ways_of_associativity);
252 define_one_ro(size);
253 define_one_ro(number_of_sets);
254 define_one_ro(shared_cpu_map);
255 define_one_ro(attributes);
256 
257 static struct attribute * cache_default_attrs[] = {
258 	&type.attr,
259 	&level.attr,
260 	&coherency_line_size.attr,
261 	&ways_of_associativity.attr,
262 	&attributes.attr,
263 	&size.attr,
264 	&number_of_sets.attr,
265 	&shared_cpu_map.attr,
266 	NULL
267 };
268 
269 #define to_object(k) container_of(k, struct cache_info, kobj)
270 #define to_attr(a) container_of(a, struct cache_attr, attr)
271 
272 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
273 {
274 	struct cache_attr *fattr = to_attr(attr);
275 	struct cache_info *this_leaf = to_object(kobj);
276 	ssize_t ret;
277 
278 	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
279 	return ret;
280 }
281 
282 static const struct sysfs_ops cache_sysfs_ops = {
283 	.show   = ia64_cache_show
284 };
285 
286 static struct kobj_type cache_ktype = {
287 	.sysfs_ops	= &cache_sysfs_ops,
288 	.default_attrs	= cache_default_attrs,
289 };
290 
291 static struct kobj_type cache_ktype_percpu_entry = {
292 	.sysfs_ops	= &cache_sysfs_ops,
293 };
294 
295 static void cpu_cache_sysfs_exit(unsigned int cpu)
296 {
297 	kfree(all_cpu_cache_info[cpu].cache_leaves);
298 	all_cpu_cache_info[cpu].cache_leaves = NULL;
299 	all_cpu_cache_info[cpu].num_cache_leaves = 0;
300 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
301 	return;
302 }
303 
304 static int cpu_cache_sysfs_init(unsigned int cpu)
305 {
306 	unsigned long i, levels, unique_caches;
307 	pal_cache_config_info_t cci;
308 	int j;
309 	long status;
310 	struct cache_info *this_cache;
311 	int num_cache_leaves = 0;
312 
313 	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
314 		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
315 		return -1;
316 	}
317 
318 	this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
319 			   GFP_KERNEL);
320 	if (this_cache == NULL)
321 		return -ENOMEM;
322 
323 	for (i=0; i < levels; i++) {
324 		for (j=2; j >0 ; j--) {
325 			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
326 					PAL_STATUS_SUCCESS)
327 				continue;
328 
329 			this_cache[num_cache_leaves].cci = cci;
330 			this_cache[num_cache_leaves].level = i + 1;
331 			this_cache[num_cache_leaves].type = j;
332 
333 			cache_shared_cpu_map_setup(cpu,
334 					&this_cache[num_cache_leaves]);
335 			num_cache_leaves ++;
336 		}
337 	}
338 
339 	all_cpu_cache_info[cpu].cache_leaves = this_cache;
340 	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
341 
342 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
343 
344 	return 0;
345 }
346 
347 /* Add cache interface for CPU device */
348 static int cache_add_dev(unsigned int cpu)
349 {
350 	struct device *sys_dev = get_cpu_device(cpu);
351 	unsigned long i, j;
352 	struct cache_info *this_object;
353 	int retval = 0;
354 
355 	if (all_cpu_cache_info[cpu].kobj.parent)
356 		return 0;
357 
358 
359 	retval = cpu_cache_sysfs_init(cpu);
360 	if (unlikely(retval < 0))
361 		return retval;
362 
363 	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
364 				      &cache_ktype_percpu_entry, &sys_dev->kobj,
365 				      "%s", "cache");
366 	if (unlikely(retval < 0)) {
367 		cpu_cache_sysfs_exit(cpu);
368 		return retval;
369 	}
370 
371 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
372 		this_object = LEAF_KOBJECT_PTR(cpu,i);
373 		retval = kobject_init_and_add(&(this_object->kobj),
374 					      &cache_ktype,
375 					      &all_cpu_cache_info[cpu].kobj,
376 					      "index%1lu", i);
377 		if (unlikely(retval)) {
378 			for (j = 0; j < i; j++) {
379 				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
380 			}
381 			kobject_put(&all_cpu_cache_info[cpu].kobj);
382 			cpu_cache_sysfs_exit(cpu);
383 			return retval;
384 		}
385 		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
386 	}
387 	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
388 	return retval;
389 }
390 
391 /* Remove cache interface for CPU device */
392 static int cache_remove_dev(unsigned int cpu)
393 {
394 	unsigned long i;
395 
396 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
397 		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
398 
399 	if (all_cpu_cache_info[cpu].kobj.parent) {
400 		kobject_put(&all_cpu_cache_info[cpu].kobj);
401 		memset(&all_cpu_cache_info[cpu].kobj,
402 			0,
403 			sizeof(struct kobject));
404 	}
405 
406 	cpu_cache_sysfs_exit(cpu);
407 
408 	return 0;
409 }
410 
411 static int __init cache_sysfs_init(void)
412 {
413 	int ret;
414 
415 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
416 				cache_add_dev, cache_remove_dev);
417 	WARN_ON(ret < 0);
418 	return 0;
419 }
420 device_initcall(cache_sysfs_init);
421