xref: /openbmc/linux/arch/ia64/kernel/topology.c (revision 6db6b729)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which are used on
7  * NUMA machines with contiguous memory.
8  * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
9  * Populate cpu entries in sysfs for non-numa systems as well
10  *  	Intel Corporation - Ashok Raj
11  * 02/27/2006 Zhang, Yanmin
12  *	Populate cpu cache entries in sysfs for cpu cache info
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/node.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/memblock.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <linux/export.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
28 
29 static struct ia64_cpu *sysfs_cpus;
30 
31 void arch_fix_phys_package_id(int num, u32 slot)
32 {
33 #ifdef CONFIG_SMP
34 	if (cpu_data(num)->socket_id == -1)
35 		cpu_data(num)->socket_id = slot;
36 #endif
37 }
38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
39 
40 
41 #ifdef CONFIG_HOTPLUG_CPU
42 int __ref arch_register_cpu(int num)
43 {
44 	/*
45 	 * If CPEI can be re-targeted or if this is not
46 	 * CPEI target, then it is hotpluggable
47 	 */
48 	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49 		sysfs_cpus[num].cpu.hotpluggable = 1;
50 	map_cpu_to_node(num, node_cpuid[num].nid);
51 	return register_cpu(&sysfs_cpus[num].cpu, num);
52 }
53 EXPORT_SYMBOL(arch_register_cpu);
54 
55 void __ref arch_unregister_cpu(int num)
56 {
57 	unregister_cpu(&sysfs_cpus[num].cpu);
58 	unmap_cpu_from_node(num, cpu_to_node(num));
59 }
60 EXPORT_SYMBOL(arch_unregister_cpu);
61 #else
62 int __init arch_register_cpu(int num)
63 {
64 	return register_cpu(&sysfs_cpus[num].cpu, num);
65 }
66 #endif /*CONFIG_HOTPLUG_CPU*/
67 
68 
69 static int __init topology_init(void)
70 {
71 	int i, err = 0;
72 
73 	sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
74 	if (!sysfs_cpus)
75 		panic("kzalloc in topology_init failed - NR_CPUS too big?");
76 
77 	for_each_present_cpu(i) {
78 		if((err = arch_register_cpu(i)))
79 			goto out;
80 	}
81 out:
82 	return err;
83 }
84 
85 subsys_initcall(topology_init);
86 
87 
88 /*
89  * Export cpu cache information through sysfs
90  */
91 
92 /*
93  *  A bunch of string array to get pretty printing
94  */
95 static const char *cache_types[] = {
96 	"",			/* not used */
97 	"Instruction",
98 	"Data",
99 	"Unified"	/* unified */
100 };
101 
102 static const char *cache_mattrib[]={
103 	"WriteThrough",
104 	"WriteBack",
105 	"",		/* reserved */
106 	""		/* reserved */
107 };
108 
109 struct cache_info {
110 	pal_cache_config_info_t	cci;
111 	cpumask_t shared_cpu_map;
112 	int level;
113 	int type;
114 	struct kobject kobj;
115 };
116 
117 struct cpu_cache_info {
118 	struct cache_info *cache_leaves;
119 	int	num_cache_leaves;
120 	struct kobject kobj;
121 };
122 
123 static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS];
124 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
125 
126 #ifdef CONFIG_SMP
127 static void cache_shared_cpu_map_setup(unsigned int cpu,
128 		struct cache_info * this_leaf)
129 {
130 	pal_cache_shared_info_t	csi;
131 	int num_shared, i = 0;
132 	unsigned int j;
133 
134 	if (cpu_data(cpu)->threads_per_core <= 1 &&
135 		cpu_data(cpu)->cores_per_socket <= 1) {
136 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
137 		return;
138 	}
139 
140 	if (ia64_pal_cache_shared_info(this_leaf->level,
141 					this_leaf->type,
142 					0,
143 					&csi) != PAL_STATUS_SUCCESS)
144 		return;
145 
146 	num_shared = (int) csi.num_shared;
147 	do {
148 		for_each_possible_cpu(j)
149 			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
150 				&& cpu_data(j)->core_id == csi.log1_cid
151 				&& cpu_data(j)->thread_id == csi.log1_tid)
152 				cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
153 
154 		i++;
155 	} while (i < num_shared &&
156 		ia64_pal_cache_shared_info(this_leaf->level,
157 				this_leaf->type,
158 				i,
159 				&csi) == PAL_STATUS_SUCCESS);
160 }
161 #else
162 static void cache_shared_cpu_map_setup(unsigned int cpu,
163 		struct cache_info * this_leaf)
164 {
165 	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
166 	return;
167 }
168 #endif
169 
170 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
171 					char *buf)
172 {
173 	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
174 }
175 
176 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
177 					char *buf)
178 {
179 	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
180 }
181 
182 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
183 {
184 	return sprintf(buf,
185 			"%s\n",
186 			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
187 }
188 
189 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
190 {
191 	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
192 }
193 
194 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
195 {
196 	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
197 	number_of_sets /= this_leaf->cci.pcci_assoc;
198 	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
199 
200 	return sprintf(buf, "%u\n", number_of_sets);
201 }
202 
203 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
204 {
205 	cpumask_t shared_cpu_map;
206 
207 	cpumask_and(&shared_cpu_map,
208 				&this_leaf->shared_cpu_map, cpu_online_mask);
209 	return scnprintf(buf, PAGE_SIZE, "%*pb\n",
210 			 cpumask_pr_args(&shared_cpu_map));
211 }
212 
213 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
214 {
215 	int type = this_leaf->type + this_leaf->cci.pcci_unified;
216 	return sprintf(buf, "%s\n", cache_types[type]);
217 }
218 
219 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
220 {
221 	return sprintf(buf, "%u\n", this_leaf->level);
222 }
223 
224 struct cache_attr {
225 	struct attribute attr;
226 	ssize_t (*show)(struct cache_info *, char *);
227 	ssize_t (*store)(struct cache_info *, const char *, size_t count);
228 };
229 
230 #ifdef define_one_ro
231 	#undef define_one_ro
232 #endif
233 #define define_one_ro(_name) \
234 	static struct cache_attr _name = \
235 __ATTR(_name, 0444, show_##_name, NULL)
236 
237 define_one_ro(level);
238 define_one_ro(type);
239 define_one_ro(coherency_line_size);
240 define_one_ro(ways_of_associativity);
241 define_one_ro(size);
242 define_one_ro(number_of_sets);
243 define_one_ro(shared_cpu_map);
244 define_one_ro(attributes);
245 
246 static struct attribute * cache_default_attrs[] = {
247 	&type.attr,
248 	&level.attr,
249 	&coherency_line_size.attr,
250 	&ways_of_associativity.attr,
251 	&attributes.attr,
252 	&size.attr,
253 	&number_of_sets.attr,
254 	&shared_cpu_map.attr,
255 	NULL
256 };
257 ATTRIBUTE_GROUPS(cache_default);
258 
259 #define to_object(k) container_of(k, struct cache_info, kobj)
260 #define to_attr(a) container_of(a, struct cache_attr, attr)
261 
262 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
263 {
264 	struct cache_attr *fattr = to_attr(attr);
265 	struct cache_info *this_leaf = to_object(kobj);
266 	ssize_t ret;
267 
268 	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
269 	return ret;
270 }
271 
272 static const struct sysfs_ops cache_sysfs_ops = {
273 	.show   = ia64_cache_show
274 };
275 
276 static struct kobj_type cache_ktype = {
277 	.sysfs_ops	= &cache_sysfs_ops,
278 	.default_groups	= cache_default_groups,
279 };
280 
281 static struct kobj_type cache_ktype_percpu_entry = {
282 	.sysfs_ops	= &cache_sysfs_ops,
283 };
284 
285 static void cpu_cache_sysfs_exit(unsigned int cpu)
286 {
287 	kfree(all_cpu_cache_info[cpu].cache_leaves);
288 	all_cpu_cache_info[cpu].cache_leaves = NULL;
289 	all_cpu_cache_info[cpu].num_cache_leaves = 0;
290 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
291 	return;
292 }
293 
294 static int cpu_cache_sysfs_init(unsigned int cpu)
295 {
296 	unsigned long i, levels, unique_caches;
297 	pal_cache_config_info_t cci;
298 	int j;
299 	long status;
300 	struct cache_info *this_cache;
301 	int num_cache_leaves = 0;
302 
303 	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
304 		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
305 		return -1;
306 	}
307 
308 	this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
309 			   GFP_KERNEL);
310 	if (this_cache == NULL)
311 		return -ENOMEM;
312 
313 	for (i=0; i < levels; i++) {
314 		for (j=2; j >0 ; j--) {
315 			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
316 					PAL_STATUS_SUCCESS)
317 				continue;
318 
319 			this_cache[num_cache_leaves].cci = cci;
320 			this_cache[num_cache_leaves].level = i + 1;
321 			this_cache[num_cache_leaves].type = j;
322 
323 			cache_shared_cpu_map_setup(cpu,
324 					&this_cache[num_cache_leaves]);
325 			num_cache_leaves ++;
326 		}
327 	}
328 
329 	all_cpu_cache_info[cpu].cache_leaves = this_cache;
330 	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
331 
332 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
333 
334 	return 0;
335 }
336 
337 /* Add cache interface for CPU device */
338 static int cache_add_dev(unsigned int cpu)
339 {
340 	struct device *sys_dev = get_cpu_device(cpu);
341 	unsigned long i, j;
342 	struct cache_info *this_object;
343 	int retval = 0;
344 
345 	if (all_cpu_cache_info[cpu].kobj.parent)
346 		return 0;
347 
348 
349 	retval = cpu_cache_sysfs_init(cpu);
350 	if (unlikely(retval < 0))
351 		return retval;
352 
353 	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
354 				      &cache_ktype_percpu_entry, &sys_dev->kobj,
355 				      "%s", "cache");
356 	if (unlikely(retval < 0)) {
357 		cpu_cache_sysfs_exit(cpu);
358 		return retval;
359 	}
360 
361 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
362 		this_object = LEAF_KOBJECT_PTR(cpu,i);
363 		retval = kobject_init_and_add(&(this_object->kobj),
364 					      &cache_ktype,
365 					      &all_cpu_cache_info[cpu].kobj,
366 					      "index%1lu", i);
367 		if (unlikely(retval)) {
368 			for (j = 0; j < i; j++) {
369 				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
370 			}
371 			kobject_put(&all_cpu_cache_info[cpu].kobj);
372 			cpu_cache_sysfs_exit(cpu);
373 			return retval;
374 		}
375 		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
376 	}
377 	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
378 	return retval;
379 }
380 
381 /* Remove cache interface for CPU device */
382 static int cache_remove_dev(unsigned int cpu)
383 {
384 	unsigned long i;
385 
386 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
387 		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
388 
389 	if (all_cpu_cache_info[cpu].kobj.parent) {
390 		kobject_put(&all_cpu_cache_info[cpu].kobj);
391 		memset(&all_cpu_cache_info[cpu].kobj,
392 			0,
393 			sizeof(struct kobject));
394 	}
395 
396 	cpu_cache_sysfs_exit(cpu);
397 
398 	return 0;
399 }
400 
401 static int __init cache_sysfs_init(void)
402 {
403 	int ret;
404 
405 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
406 				cache_add_dev, cache_remove_dev);
407 	WARN_ON(ret < 0);
408 	return 0;
409 }
410 device_initcall(cache_sysfs_init);
411