xref: /openbmc/linux/arch/ia64/kernel/topology.c (revision 63dc02bd)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *  	Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *	Populate cpu cache entries in sysfs for cpu cache info
14  */
15 
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <asm/mmzone.h>
27 #include <asm/numa.h>
28 #include <asm/cpu.h>
29 
30 static struct ia64_cpu *sysfs_cpus;
31 
32 void arch_fix_phys_package_id(int num, u32 slot)
33 {
34 #ifdef CONFIG_SMP
35 	if (cpu_data(num)->socket_id == -1)
36 		cpu_data(num)->socket_id = slot;
37 #endif
38 }
39 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
40 
41 
42 #ifdef CONFIG_HOTPLUG_CPU
43 int __ref arch_register_cpu(int num)
44 {
45 #ifdef CONFIG_ACPI
46 	/*
47 	 * If CPEI can be re-targeted or if this is not
48 	 * CPEI target, then it is hotpluggable
49 	 */
50 	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
51 		sysfs_cpus[num].cpu.hotpluggable = 1;
52 	map_cpu_to_node(num, node_cpuid[num].nid);
53 #endif
54 	return register_cpu(&sysfs_cpus[num].cpu, num);
55 }
56 EXPORT_SYMBOL(arch_register_cpu);
57 
58 void __ref arch_unregister_cpu(int num)
59 {
60 	unregister_cpu(&sysfs_cpus[num].cpu);
61 #ifdef CONFIG_ACPI
62 	unmap_cpu_from_node(num, cpu_to_node(num));
63 #endif
64 }
65 EXPORT_SYMBOL(arch_unregister_cpu);
66 #else
67 static int __init arch_register_cpu(int num)
68 {
69 	return register_cpu(&sysfs_cpus[num].cpu, num);
70 }
71 #endif /*CONFIG_HOTPLUG_CPU*/
72 
73 
74 static int __init topology_init(void)
75 {
76 	int i, err = 0;
77 
78 #ifdef CONFIG_NUMA
79 	/*
80 	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
81 	 */
82 	for_each_online_node(i) {
83 		if ((err = register_one_node(i)))
84 			goto out;
85 	}
86 #endif
87 
88 	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
89 	if (!sysfs_cpus)
90 		panic("kzalloc in topology_init failed - NR_CPUS too big?");
91 
92 	for_each_present_cpu(i) {
93 		if((err = arch_register_cpu(i)))
94 			goto out;
95 	}
96 out:
97 	return err;
98 }
99 
100 subsys_initcall(topology_init);
101 
102 
103 /*
104  * Export cpu cache information through sysfs
105  */
106 
107 /*
108  *  A bunch of string array to get pretty printing
109  */
110 static const char *cache_types[] = {
111 	"",			/* not used */
112 	"Instruction",
113 	"Data",
114 	"Unified"	/* unified */
115 };
116 
117 static const char *cache_mattrib[]={
118 	"WriteThrough",
119 	"WriteBack",
120 	"",		/* reserved */
121 	""		/* reserved */
122 };
123 
124 struct cache_info {
125 	pal_cache_config_info_t	cci;
126 	cpumask_t shared_cpu_map;
127 	int level;
128 	int type;
129 	struct kobject kobj;
130 };
131 
132 struct cpu_cache_info {
133 	struct cache_info *cache_leaves;
134 	int	num_cache_leaves;
135 	struct kobject kobj;
136 };
137 
138 static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS] __cpuinitdata;
139 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
140 
141 #ifdef CONFIG_SMP
142 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
143 		struct cache_info * this_leaf)
144 {
145 	pal_cache_shared_info_t	csi;
146 	int num_shared, i = 0;
147 	unsigned int j;
148 
149 	if (cpu_data(cpu)->threads_per_core <= 1 &&
150 		cpu_data(cpu)->cores_per_socket <= 1) {
151 		cpu_set(cpu, this_leaf->shared_cpu_map);
152 		return;
153 	}
154 
155 	if (ia64_pal_cache_shared_info(this_leaf->level,
156 					this_leaf->type,
157 					0,
158 					&csi) != PAL_STATUS_SUCCESS)
159 		return;
160 
161 	num_shared = (int) csi.num_shared;
162 	do {
163 		for_each_possible_cpu(j)
164 			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
165 				&& cpu_data(j)->core_id == csi.log1_cid
166 				&& cpu_data(j)->thread_id == csi.log1_tid)
167 				cpu_set(j, this_leaf->shared_cpu_map);
168 
169 		i++;
170 	} while (i < num_shared &&
171 		ia64_pal_cache_shared_info(this_leaf->level,
172 				this_leaf->type,
173 				i,
174 				&csi) == PAL_STATUS_SUCCESS);
175 }
176 #else
177 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
178 		struct cache_info * this_leaf)
179 {
180 	cpu_set(cpu, this_leaf->shared_cpu_map);
181 	return;
182 }
183 #endif
184 
185 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
186 					char *buf)
187 {
188 	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
189 }
190 
191 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
192 					char *buf)
193 {
194 	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
195 }
196 
197 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
198 {
199 	return sprintf(buf,
200 			"%s\n",
201 			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
202 }
203 
204 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
205 {
206 	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
207 }
208 
209 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
210 {
211 	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
212 	number_of_sets /= this_leaf->cci.pcci_assoc;
213 	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
214 
215 	return sprintf(buf, "%u\n", number_of_sets);
216 }
217 
218 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
219 {
220 	ssize_t	len;
221 	cpumask_t shared_cpu_map;
222 
223 	cpumask_and(&shared_cpu_map,
224 				&this_leaf->shared_cpu_map, cpu_online_mask);
225 	len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
226 	len += sprintf(buf+len, "\n");
227 	return len;
228 }
229 
230 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
231 {
232 	int type = this_leaf->type + this_leaf->cci.pcci_unified;
233 	return sprintf(buf, "%s\n", cache_types[type]);
234 }
235 
236 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
237 {
238 	return sprintf(buf, "%u\n", this_leaf->level);
239 }
240 
241 struct cache_attr {
242 	struct attribute attr;
243 	ssize_t (*show)(struct cache_info *, char *);
244 	ssize_t (*store)(struct cache_info *, const char *, size_t count);
245 };
246 
247 #ifdef define_one_ro
248 	#undef define_one_ro
249 #endif
250 #define define_one_ro(_name) \
251 	static struct cache_attr _name = \
252 __ATTR(_name, 0444, show_##_name, NULL)
253 
254 define_one_ro(level);
255 define_one_ro(type);
256 define_one_ro(coherency_line_size);
257 define_one_ro(ways_of_associativity);
258 define_one_ro(size);
259 define_one_ro(number_of_sets);
260 define_one_ro(shared_cpu_map);
261 define_one_ro(attributes);
262 
263 static struct attribute * cache_default_attrs[] = {
264 	&type.attr,
265 	&level.attr,
266 	&coherency_line_size.attr,
267 	&ways_of_associativity.attr,
268 	&attributes.attr,
269 	&size.attr,
270 	&number_of_sets.attr,
271 	&shared_cpu_map.attr,
272 	NULL
273 };
274 
275 #define to_object(k) container_of(k, struct cache_info, kobj)
276 #define to_attr(a) container_of(a, struct cache_attr, attr)
277 
278 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
279 {
280 	struct cache_attr *fattr = to_attr(attr);
281 	struct cache_info *this_leaf = to_object(kobj);
282 	ssize_t ret;
283 
284 	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
285 	return ret;
286 }
287 
288 static const struct sysfs_ops cache_sysfs_ops = {
289 	.show   = cache_show
290 };
291 
292 static struct kobj_type cache_ktype = {
293 	.sysfs_ops	= &cache_sysfs_ops,
294 	.default_attrs	= cache_default_attrs,
295 };
296 
297 static struct kobj_type cache_ktype_percpu_entry = {
298 	.sysfs_ops	= &cache_sysfs_ops,
299 };
300 
301 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
302 {
303 	kfree(all_cpu_cache_info[cpu].cache_leaves);
304 	all_cpu_cache_info[cpu].cache_leaves = NULL;
305 	all_cpu_cache_info[cpu].num_cache_leaves = 0;
306 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
307 	return;
308 }
309 
310 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
311 {
312 	unsigned long i, levels, unique_caches;
313 	pal_cache_config_info_t cci;
314 	int j;
315 	long status;
316 	struct cache_info *this_cache;
317 	int num_cache_leaves = 0;
318 
319 	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
320 		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
321 		return -1;
322 	}
323 
324 	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
325 			GFP_KERNEL);
326 	if (this_cache == NULL)
327 		return -ENOMEM;
328 
329 	for (i=0; i < levels; i++) {
330 		for (j=2; j >0 ; j--) {
331 			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
332 					PAL_STATUS_SUCCESS)
333 				continue;
334 
335 			this_cache[num_cache_leaves].cci = cci;
336 			this_cache[num_cache_leaves].level = i + 1;
337 			this_cache[num_cache_leaves].type = j;
338 
339 			cache_shared_cpu_map_setup(cpu,
340 					&this_cache[num_cache_leaves]);
341 			num_cache_leaves ++;
342 		}
343 	}
344 
345 	all_cpu_cache_info[cpu].cache_leaves = this_cache;
346 	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
347 
348 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
349 
350 	return 0;
351 }
352 
353 /* Add cache interface for CPU device */
354 static int __cpuinit cache_add_dev(struct device * sys_dev)
355 {
356 	unsigned int cpu = sys_dev->id;
357 	unsigned long i, j;
358 	struct cache_info *this_object;
359 	int retval = 0;
360 	cpumask_t oldmask;
361 
362 	if (all_cpu_cache_info[cpu].kobj.parent)
363 		return 0;
364 
365 	oldmask = current->cpus_allowed;
366 	retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
367 	if (unlikely(retval))
368 		return retval;
369 
370 	retval = cpu_cache_sysfs_init(cpu);
371 	set_cpus_allowed_ptr(current, &oldmask);
372 	if (unlikely(retval < 0))
373 		return retval;
374 
375 	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
376 				      &cache_ktype_percpu_entry, &sys_dev->kobj,
377 				      "%s", "cache");
378 	if (unlikely(retval < 0)) {
379 		cpu_cache_sysfs_exit(cpu);
380 		return retval;
381 	}
382 
383 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
384 		this_object = LEAF_KOBJECT_PTR(cpu,i);
385 		retval = kobject_init_and_add(&(this_object->kobj),
386 					      &cache_ktype,
387 					      &all_cpu_cache_info[cpu].kobj,
388 					      "index%1lu", i);
389 		if (unlikely(retval)) {
390 			for (j = 0; j < i; j++) {
391 				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
392 			}
393 			kobject_put(&all_cpu_cache_info[cpu].kobj);
394 			cpu_cache_sysfs_exit(cpu);
395 			return retval;
396 		}
397 		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
398 	}
399 	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
400 	return retval;
401 }
402 
403 /* Remove cache interface for CPU device */
404 static int __cpuinit cache_remove_dev(struct device * sys_dev)
405 {
406 	unsigned int cpu = sys_dev->id;
407 	unsigned long i;
408 
409 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
410 		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
411 
412 	if (all_cpu_cache_info[cpu].kobj.parent) {
413 		kobject_put(&all_cpu_cache_info[cpu].kobj);
414 		memset(&all_cpu_cache_info[cpu].kobj,
415 			0,
416 			sizeof(struct kobject));
417 	}
418 
419 	cpu_cache_sysfs_exit(cpu);
420 
421 	return 0;
422 }
423 
424 /*
425  * When a cpu is hot-plugged, do a check and initiate
426  * cache kobject if necessary
427  */
428 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
429 		unsigned long action, void *hcpu)
430 {
431 	unsigned int cpu = (unsigned long)hcpu;
432 	struct device *sys_dev;
433 
434 	sys_dev = get_cpu_device(cpu);
435 	switch (action) {
436 	case CPU_ONLINE:
437 	case CPU_ONLINE_FROZEN:
438 		cache_add_dev(sys_dev);
439 		break;
440 	case CPU_DEAD:
441 	case CPU_DEAD_FROZEN:
442 		cache_remove_dev(sys_dev);
443 		break;
444 	}
445 	return NOTIFY_OK;
446 }
447 
448 static struct notifier_block __cpuinitdata cache_cpu_notifier =
449 {
450 	.notifier_call = cache_cpu_callback
451 };
452 
453 static int __init cache_sysfs_init(void)
454 {
455 	int i;
456 
457 	for_each_online_cpu(i) {
458 		struct device *sys_dev = get_cpu_device((unsigned int)i);
459 		cache_add_dev(sys_dev);
460 	}
461 
462 	register_hotcpu_notifier(&cache_cpu_notifier);
463 
464 	return 0;
465 }
466 
467 device_initcall(cache_sysfs_init);
468 
469