1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * This file contains NUMA specific variables and functions which can 7 * be split away from DISCONTIGMEM and are used on NUMA machines with 8 * contiguous memory. 9 * 2002/08/07 Erich Focht <efocht@ess.nec.de> 10 * Populate cpu entries in sysfs for non-numa systems as well 11 * Intel Corporation - Ashok Raj 12 * 02/27/2006 Zhang, Yanmin 13 * Populate cpu cache entries in sysfs for cpu cache info 14 */ 15 16 #include <linux/cpu.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/node.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/bootmem.h> 23 #include <linux/nodemask.h> 24 #include <linux/notifier.h> 25 #include <linux/export.h> 26 #include <asm/mmzone.h> 27 #include <asm/numa.h> 28 #include <asm/cpu.h> 29 30 static struct ia64_cpu *sysfs_cpus; 31 32 void arch_fix_phys_package_id(int num, u32 slot) 33 { 34 #ifdef CONFIG_SMP 35 if (cpu_data(num)->socket_id == -1) 36 cpu_data(num)->socket_id = slot; 37 #endif 38 } 39 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id); 40 41 42 #ifdef CONFIG_HOTPLUG_CPU 43 int __ref arch_register_cpu(int num) 44 { 45 #ifdef CONFIG_ACPI 46 /* 47 * If CPEI can be re-targeted or if this is not 48 * CPEI target, then it is hotpluggable 49 */ 50 if (can_cpei_retarget() || !is_cpu_cpei_target(num)) 51 sysfs_cpus[num].cpu.hotpluggable = 1; 52 map_cpu_to_node(num, node_cpuid[num].nid); 53 #endif 54 return register_cpu(&sysfs_cpus[num].cpu, num); 55 } 56 EXPORT_SYMBOL(arch_register_cpu); 57 58 void __ref arch_unregister_cpu(int num) 59 { 60 unregister_cpu(&sysfs_cpus[num].cpu); 61 #ifdef CONFIG_ACPI 62 unmap_cpu_from_node(num, cpu_to_node(num)); 63 #endif 64 } 65 EXPORT_SYMBOL(arch_unregister_cpu); 66 #else 67 static int __init arch_register_cpu(int num) 68 { 69 return register_cpu(&sysfs_cpus[num].cpu, num); 70 } 71 #endif /*CONFIG_HOTPLUG_CPU*/ 72 73 74 static int __init topology_init(void) 75 { 76 int i, err = 0; 77 78 #ifdef CONFIG_NUMA 79 /* 80 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes? 81 */ 82 for_each_online_node(i) { 83 if ((err = register_one_node(i))) 84 goto out; 85 } 86 #endif 87 88 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL); 89 if (!sysfs_cpus) 90 panic("kzalloc in topology_init failed - NR_CPUS too big?"); 91 92 for_each_present_cpu(i) { 93 if((err = arch_register_cpu(i))) 94 goto out; 95 } 96 out: 97 return err; 98 } 99 100 subsys_initcall(topology_init); 101 102 103 /* 104 * Export cpu cache information through sysfs 105 */ 106 107 /* 108 * A bunch of string array to get pretty printing 109 */ 110 static const char *cache_types[] = { 111 "", /* not used */ 112 "Instruction", 113 "Data", 114 "Unified" /* unified */ 115 }; 116 117 static const char *cache_mattrib[]={ 118 "WriteThrough", 119 "WriteBack", 120 "", /* reserved */ 121 "" /* reserved */ 122 }; 123 124 struct cache_info { 125 pal_cache_config_info_t cci; 126 cpumask_t shared_cpu_map; 127 int level; 128 int type; 129 struct kobject kobj; 130 }; 131 132 struct cpu_cache_info { 133 struct cache_info *cache_leaves; 134 int num_cache_leaves; 135 struct kobject kobj; 136 }; 137 138 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS]; 139 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y]) 140 141 #ifdef CONFIG_SMP 142 static void cache_shared_cpu_map_setup(unsigned int cpu, 143 struct cache_info * this_leaf) 144 { 145 pal_cache_shared_info_t csi; 146 int num_shared, i = 0; 147 unsigned int j; 148 149 if (cpu_data(cpu)->threads_per_core <= 1 && 150 cpu_data(cpu)->cores_per_socket <= 1) { 151 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 152 return; 153 } 154 155 if (ia64_pal_cache_shared_info(this_leaf->level, 156 this_leaf->type, 157 0, 158 &csi) != PAL_STATUS_SUCCESS) 159 return; 160 161 num_shared = (int) csi.num_shared; 162 do { 163 for_each_possible_cpu(j) 164 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id 165 && cpu_data(j)->core_id == csi.log1_cid 166 && cpu_data(j)->thread_id == csi.log1_tid) 167 cpumask_set_cpu(j, &this_leaf->shared_cpu_map); 168 169 i++; 170 } while (i < num_shared && 171 ia64_pal_cache_shared_info(this_leaf->level, 172 this_leaf->type, 173 i, 174 &csi) == PAL_STATUS_SUCCESS); 175 } 176 #else 177 static void cache_shared_cpu_map_setup(unsigned int cpu, 178 struct cache_info * this_leaf) 179 { 180 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 181 return; 182 } 183 #endif 184 185 static ssize_t show_coherency_line_size(struct cache_info *this_leaf, 186 char *buf) 187 { 188 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size); 189 } 190 191 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf, 192 char *buf) 193 { 194 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc); 195 } 196 197 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf) 198 { 199 return sprintf(buf, 200 "%s\n", 201 cache_mattrib[this_leaf->cci.pcci_cache_attr]); 202 } 203 204 static ssize_t show_size(struct cache_info *this_leaf, char *buf) 205 { 206 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024); 207 } 208 209 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf) 210 { 211 unsigned number_of_sets = this_leaf->cci.pcci_cache_size; 212 number_of_sets /= this_leaf->cci.pcci_assoc; 213 number_of_sets /= 1 << this_leaf->cci.pcci_line_size; 214 215 return sprintf(buf, "%u\n", number_of_sets); 216 } 217 218 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf) 219 { 220 cpumask_t shared_cpu_map; 221 222 cpumask_and(&shared_cpu_map, 223 &this_leaf->shared_cpu_map, cpu_online_mask); 224 return scnprintf(buf, PAGE_SIZE, "%*pb\n", 225 cpumask_pr_args(&shared_cpu_map)); 226 } 227 228 static ssize_t show_type(struct cache_info *this_leaf, char *buf) 229 { 230 int type = this_leaf->type + this_leaf->cci.pcci_unified; 231 return sprintf(buf, "%s\n", cache_types[type]); 232 } 233 234 static ssize_t show_level(struct cache_info *this_leaf, char *buf) 235 { 236 return sprintf(buf, "%u\n", this_leaf->level); 237 } 238 239 struct cache_attr { 240 struct attribute attr; 241 ssize_t (*show)(struct cache_info *, char *); 242 ssize_t (*store)(struct cache_info *, const char *, size_t count); 243 }; 244 245 #ifdef define_one_ro 246 #undef define_one_ro 247 #endif 248 #define define_one_ro(_name) \ 249 static struct cache_attr _name = \ 250 __ATTR(_name, 0444, show_##_name, NULL) 251 252 define_one_ro(level); 253 define_one_ro(type); 254 define_one_ro(coherency_line_size); 255 define_one_ro(ways_of_associativity); 256 define_one_ro(size); 257 define_one_ro(number_of_sets); 258 define_one_ro(shared_cpu_map); 259 define_one_ro(attributes); 260 261 static struct attribute * cache_default_attrs[] = { 262 &type.attr, 263 &level.attr, 264 &coherency_line_size.attr, 265 &ways_of_associativity.attr, 266 &attributes.attr, 267 &size.attr, 268 &number_of_sets.attr, 269 &shared_cpu_map.attr, 270 NULL 271 }; 272 273 #define to_object(k) container_of(k, struct cache_info, kobj) 274 #define to_attr(a) container_of(a, struct cache_attr, attr) 275 276 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf) 277 { 278 struct cache_attr *fattr = to_attr(attr); 279 struct cache_info *this_leaf = to_object(kobj); 280 ssize_t ret; 281 282 ret = fattr->show ? fattr->show(this_leaf, buf) : 0; 283 return ret; 284 } 285 286 static const struct sysfs_ops cache_sysfs_ops = { 287 .show = ia64_cache_show 288 }; 289 290 static struct kobj_type cache_ktype = { 291 .sysfs_ops = &cache_sysfs_ops, 292 .default_attrs = cache_default_attrs, 293 }; 294 295 static struct kobj_type cache_ktype_percpu_entry = { 296 .sysfs_ops = &cache_sysfs_ops, 297 }; 298 299 static void cpu_cache_sysfs_exit(unsigned int cpu) 300 { 301 kfree(all_cpu_cache_info[cpu].cache_leaves); 302 all_cpu_cache_info[cpu].cache_leaves = NULL; 303 all_cpu_cache_info[cpu].num_cache_leaves = 0; 304 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 305 return; 306 } 307 308 static int cpu_cache_sysfs_init(unsigned int cpu) 309 { 310 unsigned long i, levels, unique_caches; 311 pal_cache_config_info_t cci; 312 int j; 313 long status; 314 struct cache_info *this_cache; 315 int num_cache_leaves = 0; 316 317 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { 318 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); 319 return -1; 320 } 321 322 this_cache=kcalloc(unique_caches, sizeof(struct cache_info), 323 GFP_KERNEL); 324 if (this_cache == NULL) 325 return -ENOMEM; 326 327 for (i=0; i < levels; i++) { 328 for (j=2; j >0 ; j--) { 329 if ((status=ia64_pal_cache_config_info(i,j, &cci)) != 330 PAL_STATUS_SUCCESS) 331 continue; 332 333 this_cache[num_cache_leaves].cci = cci; 334 this_cache[num_cache_leaves].level = i + 1; 335 this_cache[num_cache_leaves].type = j; 336 337 cache_shared_cpu_map_setup(cpu, 338 &this_cache[num_cache_leaves]); 339 num_cache_leaves ++; 340 } 341 } 342 343 all_cpu_cache_info[cpu].cache_leaves = this_cache; 344 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves; 345 346 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 347 348 return 0; 349 } 350 351 /* Add cache interface for CPU device */ 352 static int cache_add_dev(unsigned int cpu) 353 { 354 struct device *sys_dev = get_cpu_device(cpu); 355 unsigned long i, j; 356 struct cache_info *this_object; 357 int retval = 0; 358 359 if (all_cpu_cache_info[cpu].kobj.parent) 360 return 0; 361 362 363 retval = cpu_cache_sysfs_init(cpu); 364 if (unlikely(retval < 0)) 365 return retval; 366 367 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj, 368 &cache_ktype_percpu_entry, &sys_dev->kobj, 369 "%s", "cache"); 370 if (unlikely(retval < 0)) { 371 cpu_cache_sysfs_exit(cpu); 372 return retval; 373 } 374 375 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) { 376 this_object = LEAF_KOBJECT_PTR(cpu,i); 377 retval = kobject_init_and_add(&(this_object->kobj), 378 &cache_ktype, 379 &all_cpu_cache_info[cpu].kobj, 380 "index%1lu", i); 381 if (unlikely(retval)) { 382 for (j = 0; j < i; j++) { 383 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj)); 384 } 385 kobject_put(&all_cpu_cache_info[cpu].kobj); 386 cpu_cache_sysfs_exit(cpu); 387 return retval; 388 } 389 kobject_uevent(&(this_object->kobj), KOBJ_ADD); 390 } 391 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD); 392 return retval; 393 } 394 395 /* Remove cache interface for CPU device */ 396 static int cache_remove_dev(unsigned int cpu) 397 { 398 unsigned long i; 399 400 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) 401 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj)); 402 403 if (all_cpu_cache_info[cpu].kobj.parent) { 404 kobject_put(&all_cpu_cache_info[cpu].kobj); 405 memset(&all_cpu_cache_info[cpu].kobj, 406 0, 407 sizeof(struct kobject)); 408 } 409 410 cpu_cache_sysfs_exit(cpu); 411 412 return 0; 413 } 414 415 static int __init cache_sysfs_init(void) 416 { 417 int ret; 418 419 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online", 420 cache_add_dev, cache_remove_dev); 421 WARN_ON(ret < 0); 422 return 0; 423 } 424 device_initcall(cache_sysfs_init); 425