xref: /openbmc/linux/arch/ia64/kernel/topology.c (revision 545e4006)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *  	Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *	Populate cpu cache entries in sysfs for cpu cache info
14  */
15 
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
25 #include <asm/numa.h>
26 #include <asm/cpu.h>
27 
28 static struct ia64_cpu *sysfs_cpus;
29 
30 void arch_fix_phys_package_id(int num, u32 slot)
31 {
32 #ifdef CONFIG_SMP
33 	if (cpu_data(num)->socket_id == -1)
34 		cpu_data(num)->socket_id = slot;
35 #endif
36 }
37 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
38 
39 
40 #ifdef CONFIG_HOTPLUG_CPU
41 int __ref arch_register_cpu(int num)
42 {
43 #ifdef CONFIG_ACPI
44 	/*
45 	 * If CPEI can be re-targetted or if this is not
46 	 * CPEI target, then it is hotpluggable
47 	 */
48 	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49 		sysfs_cpus[num].cpu.hotpluggable = 1;
50 	map_cpu_to_node(num, node_cpuid[num].nid);
51 #endif
52 	return register_cpu(&sysfs_cpus[num].cpu, num);
53 }
54 EXPORT_SYMBOL(arch_register_cpu);
55 
56 void arch_unregister_cpu(int num)
57 {
58 	unregister_cpu(&sysfs_cpus[num].cpu);
59 	unmap_cpu_from_node(num, cpu_to_node(num));
60 }
61 EXPORT_SYMBOL(arch_unregister_cpu);
62 #else
63 static int __init arch_register_cpu(int num)
64 {
65 	return register_cpu(&sysfs_cpus[num].cpu, num);
66 }
67 #endif /*CONFIG_HOTPLUG_CPU*/
68 
69 
70 static int __init topology_init(void)
71 {
72 	int i, err = 0;
73 
74 #ifdef CONFIG_NUMA
75 	/*
76 	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
77 	 */
78 	for_each_online_node(i) {
79 		if ((err = register_one_node(i)))
80 			goto out;
81 	}
82 #endif
83 
84 	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
85 	if (!sysfs_cpus)
86 		panic("kzalloc in topology_init failed - NR_CPUS too big?");
87 
88 	for_each_present_cpu(i) {
89 		if((err = arch_register_cpu(i)))
90 			goto out;
91 	}
92 out:
93 	return err;
94 }
95 
96 subsys_initcall(topology_init);
97 
98 
99 /*
100  * Export cpu cache information through sysfs
101  */
102 
103 /*
104  *  A bunch of string array to get pretty printing
105  */
106 static const char *cache_types[] = {
107 	"",			/* not used */
108 	"Instruction",
109 	"Data",
110 	"Unified"	/* unified */
111 };
112 
113 static const char *cache_mattrib[]={
114 	"WriteThrough",
115 	"WriteBack",
116 	"",		/* reserved */
117 	""		/* reserved */
118 };
119 
120 struct cache_info {
121 	pal_cache_config_info_t	cci;
122 	cpumask_t shared_cpu_map;
123 	int level;
124 	int type;
125 	struct kobject kobj;
126 };
127 
128 struct cpu_cache_info {
129 	struct cache_info *cache_leaves;
130 	int	num_cache_leaves;
131 	struct kobject kobj;
132 };
133 
134 static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS] __cpuinitdata;
135 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
136 
137 #ifdef CONFIG_SMP
138 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
139 		struct cache_info * this_leaf)
140 {
141 	pal_cache_shared_info_t	csi;
142 	int num_shared, i = 0;
143 	unsigned int j;
144 
145 	if (cpu_data(cpu)->threads_per_core <= 1 &&
146 		cpu_data(cpu)->cores_per_socket <= 1) {
147 		cpu_set(cpu, this_leaf->shared_cpu_map);
148 		return;
149 	}
150 
151 	if (ia64_pal_cache_shared_info(this_leaf->level,
152 					this_leaf->type,
153 					0,
154 					&csi) != PAL_STATUS_SUCCESS)
155 		return;
156 
157 	num_shared = (int) csi.num_shared;
158 	do {
159 		for_each_possible_cpu(j)
160 			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
161 				&& cpu_data(j)->core_id == csi.log1_cid
162 				&& cpu_data(j)->thread_id == csi.log1_tid)
163 				cpu_set(j, this_leaf->shared_cpu_map);
164 
165 		i++;
166 	} while (i < num_shared &&
167 		ia64_pal_cache_shared_info(this_leaf->level,
168 				this_leaf->type,
169 				i,
170 				&csi) == PAL_STATUS_SUCCESS);
171 }
172 #else
173 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
174 		struct cache_info * this_leaf)
175 {
176 	cpu_set(cpu, this_leaf->shared_cpu_map);
177 	return;
178 }
179 #endif
180 
181 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
182 					char *buf)
183 {
184 	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
185 }
186 
187 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
188 					char *buf)
189 {
190 	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
191 }
192 
193 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
194 {
195 	return sprintf(buf,
196 			"%s\n",
197 			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
198 }
199 
200 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
201 {
202 	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
203 }
204 
205 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
206 {
207 	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
208 	number_of_sets /= this_leaf->cci.pcci_assoc;
209 	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
210 
211 	return sprintf(buf, "%u\n", number_of_sets);
212 }
213 
214 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
215 {
216 	ssize_t	len;
217 	cpumask_t shared_cpu_map;
218 
219 	cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
220 	len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
221 	len += sprintf(buf+len, "\n");
222 	return len;
223 }
224 
225 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
226 {
227 	int type = this_leaf->type + this_leaf->cci.pcci_unified;
228 	return sprintf(buf, "%s\n", cache_types[type]);
229 }
230 
231 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
232 {
233 	return sprintf(buf, "%u\n", this_leaf->level);
234 }
235 
236 struct cache_attr {
237 	struct attribute attr;
238 	ssize_t (*show)(struct cache_info *, char *);
239 	ssize_t (*store)(struct cache_info *, const char *, size_t count);
240 };
241 
242 #ifdef define_one_ro
243 	#undef define_one_ro
244 #endif
245 #define define_one_ro(_name) \
246 	static struct cache_attr _name = \
247 __ATTR(_name, 0444, show_##_name, NULL)
248 
249 define_one_ro(level);
250 define_one_ro(type);
251 define_one_ro(coherency_line_size);
252 define_one_ro(ways_of_associativity);
253 define_one_ro(size);
254 define_one_ro(number_of_sets);
255 define_one_ro(shared_cpu_map);
256 define_one_ro(attributes);
257 
258 static struct attribute * cache_default_attrs[] = {
259 	&type.attr,
260 	&level.attr,
261 	&coherency_line_size.attr,
262 	&ways_of_associativity.attr,
263 	&attributes.attr,
264 	&size.attr,
265 	&number_of_sets.attr,
266 	&shared_cpu_map.attr,
267 	NULL
268 };
269 
270 #define to_object(k) container_of(k, struct cache_info, kobj)
271 #define to_attr(a) container_of(a, struct cache_attr, attr)
272 
273 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
274 {
275 	struct cache_attr *fattr = to_attr(attr);
276 	struct cache_info *this_leaf = to_object(kobj);
277 	ssize_t ret;
278 
279 	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
280 	return ret;
281 }
282 
283 static struct sysfs_ops cache_sysfs_ops = {
284 	.show   = cache_show
285 };
286 
287 static struct kobj_type cache_ktype = {
288 	.sysfs_ops	= &cache_sysfs_ops,
289 	.default_attrs	= cache_default_attrs,
290 };
291 
292 static struct kobj_type cache_ktype_percpu_entry = {
293 	.sysfs_ops	= &cache_sysfs_ops,
294 };
295 
296 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
297 {
298 	kfree(all_cpu_cache_info[cpu].cache_leaves);
299 	all_cpu_cache_info[cpu].cache_leaves = NULL;
300 	all_cpu_cache_info[cpu].num_cache_leaves = 0;
301 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
302 	return;
303 }
304 
305 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
306 {
307 	u64 i, levels, unique_caches;
308 	pal_cache_config_info_t cci;
309 	int j;
310 	s64 status;
311 	struct cache_info *this_cache;
312 	int num_cache_leaves = 0;
313 
314 	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
315 		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
316 		return -1;
317 	}
318 
319 	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
320 			GFP_KERNEL);
321 	if (this_cache == NULL)
322 		return -ENOMEM;
323 
324 	for (i=0; i < levels; i++) {
325 		for (j=2; j >0 ; j--) {
326 			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
327 					PAL_STATUS_SUCCESS)
328 				continue;
329 
330 			this_cache[num_cache_leaves].cci = cci;
331 			this_cache[num_cache_leaves].level = i + 1;
332 			this_cache[num_cache_leaves].type = j;
333 
334 			cache_shared_cpu_map_setup(cpu,
335 					&this_cache[num_cache_leaves]);
336 			num_cache_leaves ++;
337 		}
338 	}
339 
340 	all_cpu_cache_info[cpu].cache_leaves = this_cache;
341 	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
342 
343 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
344 
345 	return 0;
346 }
347 
348 /* Add cache interface for CPU device */
349 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
350 {
351 	unsigned int cpu = sys_dev->id;
352 	unsigned long i, j;
353 	struct cache_info *this_object;
354 	int retval = 0;
355 	cpumask_t oldmask;
356 
357 	if (all_cpu_cache_info[cpu].kobj.parent)
358 		return 0;
359 
360 	oldmask = current->cpus_allowed;
361 	retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
362 	if (unlikely(retval))
363 		return retval;
364 
365 	retval = cpu_cache_sysfs_init(cpu);
366 	set_cpus_allowed(current, oldmask);
367 	if (unlikely(retval < 0))
368 		return retval;
369 
370 	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
371 				      &cache_ktype_percpu_entry, &sys_dev->kobj,
372 				      "%s", "cache");
373 
374 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
375 		this_object = LEAF_KOBJECT_PTR(cpu,i);
376 		retval = kobject_init_and_add(&(this_object->kobj),
377 					      &cache_ktype,
378 					      &all_cpu_cache_info[cpu].kobj,
379 					      "index%1lu", i);
380 		if (unlikely(retval)) {
381 			for (j = 0; j < i; j++) {
382 				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
383 			}
384 			kobject_put(&all_cpu_cache_info[cpu].kobj);
385 			cpu_cache_sysfs_exit(cpu);
386 			break;
387 		}
388 		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
389 	}
390 	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
391 	return retval;
392 }
393 
394 /* Remove cache interface for CPU device */
395 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
396 {
397 	unsigned int cpu = sys_dev->id;
398 	unsigned long i;
399 
400 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
401 		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
402 
403 	if (all_cpu_cache_info[cpu].kobj.parent) {
404 		kobject_put(&all_cpu_cache_info[cpu].kobj);
405 		memset(&all_cpu_cache_info[cpu].kobj,
406 			0,
407 			sizeof(struct kobject));
408 	}
409 
410 	cpu_cache_sysfs_exit(cpu);
411 
412 	return 0;
413 }
414 
415 /*
416  * When a cpu is hot-plugged, do a check and initiate
417  * cache kobject if necessary
418  */
419 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
420 		unsigned long action, void *hcpu)
421 {
422 	unsigned int cpu = (unsigned long)hcpu;
423 	struct sys_device *sys_dev;
424 
425 	sys_dev = get_cpu_sysdev(cpu);
426 	switch (action) {
427 	case CPU_ONLINE:
428 	case CPU_ONLINE_FROZEN:
429 		cache_add_dev(sys_dev);
430 		break;
431 	case CPU_DEAD:
432 	case CPU_DEAD_FROZEN:
433 		cache_remove_dev(sys_dev);
434 		break;
435 	}
436 	return NOTIFY_OK;
437 }
438 
439 static struct notifier_block __cpuinitdata cache_cpu_notifier =
440 {
441 	.notifier_call = cache_cpu_callback
442 };
443 
444 static int __init cache_sysfs_init(void)
445 {
446 	int i;
447 
448 	for_each_online_cpu(i) {
449 		struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
450 		cache_add_dev(sys_dev);
451 	}
452 
453 	register_hotcpu_notifier(&cache_cpu_notifier);
454 
455 	return 0;
456 }
457 
458 device_initcall(cache_sysfs_init);
459 
460