1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * This file contains NUMA specific variables and functions which can 7 * be split away from DISCONTIGMEM and are used on NUMA machines with 8 * contiguous memory. 9 * 2002/08/07 Erich Focht <efocht@ess.nec.de> 10 * Populate cpu entries in sysfs for non-numa systems as well 11 * Intel Corporation - Ashok Raj 12 * 02/27/2006 Zhang, Yanmin 13 * Populate cpu cache entries in sysfs for cpu cache info 14 */ 15 16 #include <linux/cpu.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/node.h> 20 #include <linux/init.h> 21 #include <linux/bootmem.h> 22 #include <linux/nodemask.h> 23 #include <linux/notifier.h> 24 #include <asm/mmzone.h> 25 #include <asm/numa.h> 26 #include <asm/cpu.h> 27 28 static struct ia64_cpu *sysfs_cpus; 29 30 void arch_fix_phys_package_id(int num, u32 slot) 31 { 32 #ifdef CONFIG_SMP 33 if (cpu_data(num)->socket_id == -1) 34 cpu_data(num)->socket_id = slot; 35 #endif 36 } 37 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id); 38 39 40 #ifdef CONFIG_HOTPLUG_CPU 41 int __ref arch_register_cpu(int num) 42 { 43 #ifdef CONFIG_ACPI 44 /* 45 * If CPEI can be re-targetted or if this is not 46 * CPEI target, then it is hotpluggable 47 */ 48 if (can_cpei_retarget() || !is_cpu_cpei_target(num)) 49 sysfs_cpus[num].cpu.hotpluggable = 1; 50 map_cpu_to_node(num, node_cpuid[num].nid); 51 #endif 52 return register_cpu(&sysfs_cpus[num].cpu, num); 53 } 54 EXPORT_SYMBOL(arch_register_cpu); 55 56 void arch_unregister_cpu(int num) 57 { 58 unregister_cpu(&sysfs_cpus[num].cpu); 59 unmap_cpu_from_node(num, cpu_to_node(num)); 60 } 61 EXPORT_SYMBOL(arch_unregister_cpu); 62 #else 63 static int __init arch_register_cpu(int num) 64 { 65 return register_cpu(&sysfs_cpus[num].cpu, num); 66 } 67 #endif /*CONFIG_HOTPLUG_CPU*/ 68 69 70 static int __init topology_init(void) 71 { 72 int i, err = 0; 73 74 #ifdef CONFIG_NUMA 75 /* 76 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes? 77 */ 78 for_each_online_node(i) { 79 if ((err = register_one_node(i))) 80 goto out; 81 } 82 #endif 83 84 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL); 85 if (!sysfs_cpus) 86 panic("kzalloc in topology_init failed - NR_CPUS too big?"); 87 88 for_each_present_cpu(i) { 89 if((err = arch_register_cpu(i))) 90 goto out; 91 } 92 out: 93 return err; 94 } 95 96 subsys_initcall(topology_init); 97 98 99 /* 100 * Export cpu cache information through sysfs 101 */ 102 103 /* 104 * A bunch of string array to get pretty printing 105 */ 106 static const char *cache_types[] = { 107 "", /* not used */ 108 "Instruction", 109 "Data", 110 "Unified" /* unified */ 111 }; 112 113 static const char *cache_mattrib[]={ 114 "WriteThrough", 115 "WriteBack", 116 "", /* reserved */ 117 "" /* reserved */ 118 }; 119 120 struct cache_info { 121 pal_cache_config_info_t cci; 122 cpumask_t shared_cpu_map; 123 int level; 124 int type; 125 struct kobject kobj; 126 }; 127 128 struct cpu_cache_info { 129 struct cache_info *cache_leaves; 130 int num_cache_leaves; 131 struct kobject kobj; 132 }; 133 134 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS] __cpuinitdata; 135 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y]) 136 137 #ifdef CONFIG_SMP 138 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu, 139 struct cache_info * this_leaf) 140 { 141 pal_cache_shared_info_t csi; 142 int num_shared, i = 0; 143 unsigned int j; 144 145 if (cpu_data(cpu)->threads_per_core <= 1 && 146 cpu_data(cpu)->cores_per_socket <= 1) { 147 cpu_set(cpu, this_leaf->shared_cpu_map); 148 return; 149 } 150 151 if (ia64_pal_cache_shared_info(this_leaf->level, 152 this_leaf->type, 153 0, 154 &csi) != PAL_STATUS_SUCCESS) 155 return; 156 157 num_shared = (int) csi.num_shared; 158 do { 159 for_each_possible_cpu(j) 160 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id 161 && cpu_data(j)->core_id == csi.log1_cid 162 && cpu_data(j)->thread_id == csi.log1_tid) 163 cpu_set(j, this_leaf->shared_cpu_map); 164 165 i++; 166 } while (i < num_shared && 167 ia64_pal_cache_shared_info(this_leaf->level, 168 this_leaf->type, 169 i, 170 &csi) == PAL_STATUS_SUCCESS); 171 } 172 #else 173 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, 174 struct cache_info * this_leaf) 175 { 176 cpu_set(cpu, this_leaf->shared_cpu_map); 177 return; 178 } 179 #endif 180 181 static ssize_t show_coherency_line_size(struct cache_info *this_leaf, 182 char *buf) 183 { 184 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size); 185 } 186 187 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf, 188 char *buf) 189 { 190 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc); 191 } 192 193 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf) 194 { 195 return sprintf(buf, 196 "%s\n", 197 cache_mattrib[this_leaf->cci.pcci_cache_attr]); 198 } 199 200 static ssize_t show_size(struct cache_info *this_leaf, char *buf) 201 { 202 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024); 203 } 204 205 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf) 206 { 207 unsigned number_of_sets = this_leaf->cci.pcci_cache_size; 208 number_of_sets /= this_leaf->cci.pcci_assoc; 209 number_of_sets /= 1 << this_leaf->cci.pcci_line_size; 210 211 return sprintf(buf, "%u\n", number_of_sets); 212 } 213 214 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf) 215 { 216 ssize_t len; 217 cpumask_t shared_cpu_map; 218 219 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map); 220 len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map); 221 len += sprintf(buf+len, "\n"); 222 return len; 223 } 224 225 static ssize_t show_type(struct cache_info *this_leaf, char *buf) 226 { 227 int type = this_leaf->type + this_leaf->cci.pcci_unified; 228 return sprintf(buf, "%s\n", cache_types[type]); 229 } 230 231 static ssize_t show_level(struct cache_info *this_leaf, char *buf) 232 { 233 return sprintf(buf, "%u\n", this_leaf->level); 234 } 235 236 struct cache_attr { 237 struct attribute attr; 238 ssize_t (*show)(struct cache_info *, char *); 239 ssize_t (*store)(struct cache_info *, const char *, size_t count); 240 }; 241 242 #ifdef define_one_ro 243 #undef define_one_ro 244 #endif 245 #define define_one_ro(_name) \ 246 static struct cache_attr _name = \ 247 __ATTR(_name, 0444, show_##_name, NULL) 248 249 define_one_ro(level); 250 define_one_ro(type); 251 define_one_ro(coherency_line_size); 252 define_one_ro(ways_of_associativity); 253 define_one_ro(size); 254 define_one_ro(number_of_sets); 255 define_one_ro(shared_cpu_map); 256 define_one_ro(attributes); 257 258 static struct attribute * cache_default_attrs[] = { 259 &type.attr, 260 &level.attr, 261 &coherency_line_size.attr, 262 &ways_of_associativity.attr, 263 &attributes.attr, 264 &size.attr, 265 &number_of_sets.attr, 266 &shared_cpu_map.attr, 267 NULL 268 }; 269 270 #define to_object(k) container_of(k, struct cache_info, kobj) 271 #define to_attr(a) container_of(a, struct cache_attr, attr) 272 273 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf) 274 { 275 struct cache_attr *fattr = to_attr(attr); 276 struct cache_info *this_leaf = to_object(kobj); 277 ssize_t ret; 278 279 ret = fattr->show ? fattr->show(this_leaf, buf) : 0; 280 return ret; 281 } 282 283 static struct sysfs_ops cache_sysfs_ops = { 284 .show = cache_show 285 }; 286 287 static struct kobj_type cache_ktype = { 288 .sysfs_ops = &cache_sysfs_ops, 289 .default_attrs = cache_default_attrs, 290 }; 291 292 static struct kobj_type cache_ktype_percpu_entry = { 293 .sysfs_ops = &cache_sysfs_ops, 294 }; 295 296 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu) 297 { 298 kfree(all_cpu_cache_info[cpu].cache_leaves); 299 all_cpu_cache_info[cpu].cache_leaves = NULL; 300 all_cpu_cache_info[cpu].num_cache_leaves = 0; 301 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 302 return; 303 } 304 305 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu) 306 { 307 u64 i, levels, unique_caches; 308 pal_cache_config_info_t cci; 309 int j; 310 s64 status; 311 struct cache_info *this_cache; 312 int num_cache_leaves = 0; 313 314 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { 315 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); 316 return -1; 317 } 318 319 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches, 320 GFP_KERNEL); 321 if (this_cache == NULL) 322 return -ENOMEM; 323 324 for (i=0; i < levels; i++) { 325 for (j=2; j >0 ; j--) { 326 if ((status=ia64_pal_cache_config_info(i,j, &cci)) != 327 PAL_STATUS_SUCCESS) 328 continue; 329 330 this_cache[num_cache_leaves].cci = cci; 331 this_cache[num_cache_leaves].level = i + 1; 332 this_cache[num_cache_leaves].type = j; 333 334 cache_shared_cpu_map_setup(cpu, 335 &this_cache[num_cache_leaves]); 336 num_cache_leaves ++; 337 } 338 } 339 340 all_cpu_cache_info[cpu].cache_leaves = this_cache; 341 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves; 342 343 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 344 345 return 0; 346 } 347 348 /* Add cache interface for CPU device */ 349 static int __cpuinit cache_add_dev(struct sys_device * sys_dev) 350 { 351 unsigned int cpu = sys_dev->id; 352 unsigned long i, j; 353 struct cache_info *this_object; 354 int retval = 0; 355 cpumask_t oldmask; 356 357 if (all_cpu_cache_info[cpu].kobj.parent) 358 return 0; 359 360 oldmask = current->cpus_allowed; 361 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu)); 362 if (unlikely(retval)) 363 return retval; 364 365 retval = cpu_cache_sysfs_init(cpu); 366 set_cpus_allowed(current, oldmask); 367 if (unlikely(retval < 0)) 368 return retval; 369 370 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj, 371 &cache_ktype_percpu_entry, &sys_dev->kobj, 372 "%s", "cache"); 373 374 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) { 375 this_object = LEAF_KOBJECT_PTR(cpu,i); 376 retval = kobject_init_and_add(&(this_object->kobj), 377 &cache_ktype, 378 &all_cpu_cache_info[cpu].kobj, 379 "index%1lu", i); 380 if (unlikely(retval)) { 381 for (j = 0; j < i; j++) { 382 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj)); 383 } 384 kobject_put(&all_cpu_cache_info[cpu].kobj); 385 cpu_cache_sysfs_exit(cpu); 386 break; 387 } 388 kobject_uevent(&(this_object->kobj), KOBJ_ADD); 389 } 390 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD); 391 return retval; 392 } 393 394 /* Remove cache interface for CPU device */ 395 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev) 396 { 397 unsigned int cpu = sys_dev->id; 398 unsigned long i; 399 400 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) 401 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj)); 402 403 if (all_cpu_cache_info[cpu].kobj.parent) { 404 kobject_put(&all_cpu_cache_info[cpu].kobj); 405 memset(&all_cpu_cache_info[cpu].kobj, 406 0, 407 sizeof(struct kobject)); 408 } 409 410 cpu_cache_sysfs_exit(cpu); 411 412 return 0; 413 } 414 415 /* 416 * When a cpu is hot-plugged, do a check and initiate 417 * cache kobject if necessary 418 */ 419 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb, 420 unsigned long action, void *hcpu) 421 { 422 unsigned int cpu = (unsigned long)hcpu; 423 struct sys_device *sys_dev; 424 425 sys_dev = get_cpu_sysdev(cpu); 426 switch (action) { 427 case CPU_ONLINE: 428 case CPU_ONLINE_FROZEN: 429 cache_add_dev(sys_dev); 430 break; 431 case CPU_DEAD: 432 case CPU_DEAD_FROZEN: 433 cache_remove_dev(sys_dev); 434 break; 435 } 436 return NOTIFY_OK; 437 } 438 439 static struct notifier_block __cpuinitdata cache_cpu_notifier = 440 { 441 .notifier_call = cache_cpu_callback 442 }; 443 444 static int __init cache_sysfs_init(void) 445 { 446 int i; 447 448 for_each_online_cpu(i) { 449 struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i); 450 cache_add_dev(sys_dev); 451 } 452 453 register_hotcpu_notifier(&cache_cpu_notifier); 454 455 return 0; 456 } 457 458 device_initcall(cache_sysfs_init); 459 460