xref: /openbmc/linux/arch/ia64/kernel/topology.c (revision 4f3865fb57a04db7cca068fed1c15badc064a302)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *  	Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *	Populate cpu cache entries in sysfs for cpu cache info
14  */
15 
16 #include <linux/config.h>
17 #include <linux/cpu.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/node.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
28 
29 #ifdef CONFIG_NUMA
30 static struct node *sysfs_nodes;
31 #endif
32 static struct ia64_cpu *sysfs_cpus;
33 
34 int arch_register_cpu(int num)
35 {
36 	struct node *parent = NULL;
37 
38 #ifdef CONFIG_NUMA
39 	parent = &sysfs_nodes[cpu_to_node(num)];
40 #endif /* CONFIG_NUMA */
41 
42 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
43 	/*
44 	 * If CPEI cannot be re-targetted, and this is
45 	 * CPEI target, then dont create the control file
46 	 */
47 	if (!can_cpei_retarget() && is_cpu_cpei_target(num))
48 		sysfs_cpus[num].cpu.no_control = 1;
49 #endif
50 
51 	return register_cpu(&sysfs_cpus[num].cpu, num, parent);
52 }
53 
54 #ifdef CONFIG_HOTPLUG_CPU
55 
56 void arch_unregister_cpu(int num)
57 {
58 	struct node *parent = NULL;
59 
60 #ifdef CONFIG_NUMA
61 	int node = cpu_to_node(num);
62 	parent = &sysfs_nodes[node];
63 #endif /* CONFIG_NUMA */
64 
65 	return unregister_cpu(&sysfs_cpus[num].cpu, parent);
66 }
67 EXPORT_SYMBOL(arch_register_cpu);
68 EXPORT_SYMBOL(arch_unregister_cpu);
69 #endif /*CONFIG_HOTPLUG_CPU*/
70 
71 
72 static int __init topology_init(void)
73 {
74 	int i, err = 0;
75 
76 #ifdef CONFIG_NUMA
77 	sysfs_nodes = kzalloc(sizeof(struct node) * MAX_NUMNODES, GFP_KERNEL);
78 	if (!sysfs_nodes) {
79 		err = -ENOMEM;
80 		goto out;
81 	}
82 
83 	/*
84 	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
85 	 */
86 	for_each_online_node(i) {
87 		if ((err = register_node(&sysfs_nodes[i], i, 0)))
88 			goto out;
89 	}
90 #endif
91 
92 	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
93 	if (!sysfs_cpus) {
94 		err = -ENOMEM;
95 		goto out;
96 	}
97 
98 	for_each_present_cpu(i) {
99 		if((err = arch_register_cpu(i)))
100 			goto out;
101 	}
102 out:
103 	return err;
104 }
105 
106 subsys_initcall(topology_init);
107 
108 
109 /*
110  * Export cpu cache information through sysfs
111  */
112 
113 /*
114  *  A bunch of string array to get pretty printing
115  */
116 static const char *cache_types[] = {
117 	"",			/* not used */
118 	"Instruction",
119 	"Data",
120 	"Unified"	/* unified */
121 };
122 
123 static const char *cache_mattrib[]={
124 	"WriteThrough",
125 	"WriteBack",
126 	"",		/* reserved */
127 	""		/* reserved */
128 };
129 
130 struct cache_info {
131 	pal_cache_config_info_t	cci;
132 	cpumask_t shared_cpu_map;
133 	int level;
134 	int type;
135 	struct kobject kobj;
136 };
137 
138 struct cpu_cache_info {
139 	struct cache_info *cache_leaves;
140 	int	num_cache_leaves;
141 	struct kobject kobj;
142 };
143 
144 static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS];
145 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
146 
147 #ifdef CONFIG_SMP
148 static void cache_shared_cpu_map_setup( unsigned int cpu,
149 		struct cache_info * this_leaf)
150 {
151 	pal_cache_shared_info_t	csi;
152 	int num_shared, i = 0;
153 	unsigned int j;
154 
155 	if (cpu_data(cpu)->threads_per_core <= 1 &&
156 		cpu_data(cpu)->cores_per_socket <= 1) {
157 		cpu_set(cpu, this_leaf->shared_cpu_map);
158 		return;
159 	}
160 
161 	if (ia64_pal_cache_shared_info(this_leaf->level,
162 					this_leaf->type,
163 					0,
164 					&csi) != PAL_STATUS_SUCCESS)
165 		return;
166 
167 	num_shared = (int) csi.num_shared;
168 	do {
169 		for_each_cpu(j)
170 			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
171 				&& cpu_data(j)->core_id == csi.log1_cid
172 				&& cpu_data(j)->thread_id == csi.log1_tid)
173 				cpu_set(j, this_leaf->shared_cpu_map);
174 
175 		i++;
176 	} while (i < num_shared &&
177 		ia64_pal_cache_shared_info(this_leaf->level,
178 				this_leaf->type,
179 				i,
180 				&csi) == PAL_STATUS_SUCCESS);
181 }
182 #else
183 static void cache_shared_cpu_map_setup(unsigned int cpu,
184 		struct cache_info * this_leaf)
185 {
186 	cpu_set(cpu, this_leaf->shared_cpu_map);
187 	return;
188 }
189 #endif
190 
191 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
192 					char *buf)
193 {
194 	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
195 }
196 
197 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
198 					char *buf)
199 {
200 	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
201 }
202 
203 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
204 {
205 	return sprintf(buf,
206 			"%s\n",
207 			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
208 }
209 
210 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
211 {
212 	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
213 }
214 
215 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
216 {
217 	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
218 	number_of_sets /= this_leaf->cci.pcci_assoc;
219 	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
220 
221 	return sprintf(buf, "%u\n", number_of_sets);
222 }
223 
224 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
225 {
226 	ssize_t	len;
227 	cpumask_t shared_cpu_map;
228 
229 	cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
230 	len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
231 	len += sprintf(buf+len, "\n");
232 	return len;
233 }
234 
235 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
236 {
237 	int type = this_leaf->type + this_leaf->cci.pcci_unified;
238 	return sprintf(buf, "%s\n", cache_types[type]);
239 }
240 
241 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
242 {
243 	return sprintf(buf, "%u\n", this_leaf->level);
244 }
245 
246 struct cache_attr {
247 	struct attribute attr;
248 	ssize_t (*show)(struct cache_info *, char *);
249 	ssize_t (*store)(struct cache_info *, const char *, size_t count);
250 };
251 
252 #ifdef define_one_ro
253 	#undef define_one_ro
254 #endif
255 #define define_one_ro(_name) \
256 	static struct cache_attr _name = \
257 __ATTR(_name, 0444, show_##_name, NULL)
258 
259 define_one_ro(level);
260 define_one_ro(type);
261 define_one_ro(coherency_line_size);
262 define_one_ro(ways_of_associativity);
263 define_one_ro(size);
264 define_one_ro(number_of_sets);
265 define_one_ro(shared_cpu_map);
266 define_one_ro(attributes);
267 
268 static struct attribute * cache_default_attrs[] = {
269 	&type.attr,
270 	&level.attr,
271 	&coherency_line_size.attr,
272 	&ways_of_associativity.attr,
273 	&attributes.attr,
274 	&size.attr,
275 	&number_of_sets.attr,
276 	&shared_cpu_map.attr,
277 	NULL
278 };
279 
280 #define to_object(k) container_of(k, struct cache_info, kobj)
281 #define to_attr(a) container_of(a, struct cache_attr, attr)
282 
283 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
284 {
285 	struct cache_attr *fattr = to_attr(attr);
286 	struct cache_info *this_leaf = to_object(kobj);
287 	ssize_t ret;
288 
289 	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
290 	return ret;
291 }
292 
293 static struct sysfs_ops cache_sysfs_ops = {
294 	.show   = cache_show
295 };
296 
297 static struct kobj_type cache_ktype = {
298 	.sysfs_ops	= &cache_sysfs_ops,
299 	.default_attrs	= cache_default_attrs,
300 };
301 
302 static struct kobj_type cache_ktype_percpu_entry = {
303 	.sysfs_ops	= &cache_sysfs_ops,
304 };
305 
306 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
307 {
308 	kfree(all_cpu_cache_info[cpu].cache_leaves);
309 	all_cpu_cache_info[cpu].cache_leaves = NULL;
310 	all_cpu_cache_info[cpu].num_cache_leaves = 0;
311 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
312 	return;
313 }
314 
315 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
316 {
317 	u64 i, levels, unique_caches;
318 	pal_cache_config_info_t cci;
319 	int j;
320 	s64 status;
321 	struct cache_info *this_cache;
322 	int num_cache_leaves = 0;
323 
324 	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
325 		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
326 		return -1;
327 	}
328 
329 	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
330 			GFP_KERNEL);
331 	if (this_cache == NULL)
332 		return -ENOMEM;
333 
334 	for (i=0; i < levels; i++) {
335 		for (j=2; j >0 ; j--) {
336 			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
337 					PAL_STATUS_SUCCESS)
338 				continue;
339 
340 			this_cache[num_cache_leaves].cci = cci;
341 			this_cache[num_cache_leaves].level = i + 1;
342 			this_cache[num_cache_leaves].type = j;
343 
344 			cache_shared_cpu_map_setup(cpu,
345 					&this_cache[num_cache_leaves]);
346 			num_cache_leaves ++;
347 		}
348 	}
349 
350 	all_cpu_cache_info[cpu].cache_leaves = this_cache;
351 	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
352 
353 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
354 
355 	return 0;
356 }
357 
358 /* Add cache interface for CPU device */
359 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
360 {
361 	unsigned int cpu = sys_dev->id;
362 	unsigned long i, j;
363 	struct cache_info *this_object;
364 	int retval = 0;
365 	cpumask_t oldmask;
366 
367 	if (all_cpu_cache_info[cpu].kobj.parent)
368 		return 0;
369 
370 	oldmask = current->cpus_allowed;
371 	retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
372 	if (unlikely(retval))
373 		return retval;
374 
375 	retval = cpu_cache_sysfs_init(cpu);
376 	set_cpus_allowed(current, oldmask);
377 	if (unlikely(retval < 0))
378 		return retval;
379 
380 	all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj;
381 	kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache");
382 	all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry;
383 	retval = kobject_register(&all_cpu_cache_info[cpu].kobj);
384 
385 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
386 		this_object = LEAF_KOBJECT_PTR(cpu,i);
387 		this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj;
388 		kobject_set_name(&(this_object->kobj), "index%1lu", i);
389 		this_object->kobj.ktype = &cache_ktype;
390 		retval = kobject_register(&(this_object->kobj));
391 		if (unlikely(retval)) {
392 			for (j = 0; j < i; j++) {
393 				kobject_unregister(
394 					&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
395 			}
396 			kobject_unregister(&all_cpu_cache_info[cpu].kobj);
397 			cpu_cache_sysfs_exit(cpu);
398 			break;
399 		}
400 	}
401 	return retval;
402 }
403 
404 /* Remove cache interface for CPU device */
405 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
406 {
407 	unsigned int cpu = sys_dev->id;
408 	unsigned long i;
409 
410 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
411 		kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
412 
413 	if (all_cpu_cache_info[cpu].kobj.parent) {
414 		kobject_unregister(&all_cpu_cache_info[cpu].kobj);
415 		memset(&all_cpu_cache_info[cpu].kobj,
416 			0,
417 			sizeof(struct kobject));
418 	}
419 
420 	cpu_cache_sysfs_exit(cpu);
421 
422 	return 0;
423 }
424 
425 /*
426  * When a cpu is hot-plugged, do a check and initiate
427  * cache kobject if necessary
428  */
429 static int cache_cpu_callback(struct notifier_block *nfb,
430 		unsigned long action, void *hcpu)
431 {
432 	unsigned int cpu = (unsigned long)hcpu;
433 	struct sys_device *sys_dev;
434 
435 	sys_dev = get_cpu_sysdev(cpu);
436 	switch (action) {
437 	case CPU_ONLINE:
438 		cache_add_dev(sys_dev);
439 		break;
440 	case CPU_DEAD:
441 		cache_remove_dev(sys_dev);
442 		break;
443 	}
444 	return NOTIFY_OK;
445 }
446 
447 static struct notifier_block cache_cpu_notifier =
448 {
449 	.notifier_call = cache_cpu_callback
450 };
451 
452 static int __cpuinit cache_sysfs_init(void)
453 {
454 	int i;
455 
456 	for_each_online_cpu(i) {
457 		cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE,
458 				(void *)(long)i);
459 	}
460 
461 	register_cpu_notifier(&cache_cpu_notifier);
462 
463 	return 0;
464 }
465 
466 device_initcall(cache_sysfs_init);
467 
468