1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * This file contains NUMA specific variables and functions which can 7 * be split away from DISCONTIGMEM and are used on NUMA machines with 8 * contiguous memory. 9 * 2002/08/07 Erich Focht <efocht@ess.nec.de> 10 * Populate cpu entries in sysfs for non-numa systems as well 11 * Intel Corporation - Ashok Raj 12 * 02/27/2006 Zhang, Yanmin 13 * Populate cpu cache entries in sysfs for cpu cache info 14 */ 15 16 #include <linux/cpu.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/node.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/bootmem.h> 23 #include <linux/nodemask.h> 24 #include <linux/notifier.h> 25 #include <asm/mmzone.h> 26 #include <asm/numa.h> 27 #include <asm/cpu.h> 28 29 static struct ia64_cpu *sysfs_cpus; 30 31 void arch_fix_phys_package_id(int num, u32 slot) 32 { 33 #ifdef CONFIG_SMP 34 if (cpu_data(num)->socket_id == -1) 35 cpu_data(num)->socket_id = slot; 36 #endif 37 } 38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id); 39 40 41 #ifdef CONFIG_HOTPLUG_CPU 42 int __ref arch_register_cpu(int num) 43 { 44 #ifdef CONFIG_ACPI 45 /* 46 * If CPEI can be re-targetted or if this is not 47 * CPEI target, then it is hotpluggable 48 */ 49 if (can_cpei_retarget() || !is_cpu_cpei_target(num)) 50 sysfs_cpus[num].cpu.hotpluggable = 1; 51 map_cpu_to_node(num, node_cpuid[num].nid); 52 #endif 53 return register_cpu(&sysfs_cpus[num].cpu, num); 54 } 55 EXPORT_SYMBOL(arch_register_cpu); 56 57 void __ref arch_unregister_cpu(int num) 58 { 59 unregister_cpu(&sysfs_cpus[num].cpu); 60 #ifdef CONFIG_ACPI 61 unmap_cpu_from_node(num, cpu_to_node(num)); 62 #endif 63 } 64 EXPORT_SYMBOL(arch_unregister_cpu); 65 #else 66 static int __init arch_register_cpu(int num) 67 { 68 return register_cpu(&sysfs_cpus[num].cpu, num); 69 } 70 #endif /*CONFIG_HOTPLUG_CPU*/ 71 72 73 static int __init topology_init(void) 74 { 75 int i, err = 0; 76 77 #ifdef CONFIG_NUMA 78 /* 79 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes? 80 */ 81 for_each_online_node(i) { 82 if ((err = register_one_node(i))) 83 goto out; 84 } 85 #endif 86 87 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL); 88 if (!sysfs_cpus) 89 panic("kzalloc in topology_init failed - NR_CPUS too big?"); 90 91 for_each_present_cpu(i) { 92 if((err = arch_register_cpu(i))) 93 goto out; 94 } 95 out: 96 return err; 97 } 98 99 subsys_initcall(topology_init); 100 101 102 /* 103 * Export cpu cache information through sysfs 104 */ 105 106 /* 107 * A bunch of string array to get pretty printing 108 */ 109 static const char *cache_types[] = { 110 "", /* not used */ 111 "Instruction", 112 "Data", 113 "Unified" /* unified */ 114 }; 115 116 static const char *cache_mattrib[]={ 117 "WriteThrough", 118 "WriteBack", 119 "", /* reserved */ 120 "" /* reserved */ 121 }; 122 123 struct cache_info { 124 pal_cache_config_info_t cci; 125 cpumask_t shared_cpu_map; 126 int level; 127 int type; 128 struct kobject kobj; 129 }; 130 131 struct cpu_cache_info { 132 struct cache_info *cache_leaves; 133 int num_cache_leaves; 134 struct kobject kobj; 135 }; 136 137 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS] __cpuinitdata; 138 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y]) 139 140 #ifdef CONFIG_SMP 141 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu, 142 struct cache_info * this_leaf) 143 { 144 pal_cache_shared_info_t csi; 145 int num_shared, i = 0; 146 unsigned int j; 147 148 if (cpu_data(cpu)->threads_per_core <= 1 && 149 cpu_data(cpu)->cores_per_socket <= 1) { 150 cpu_set(cpu, this_leaf->shared_cpu_map); 151 return; 152 } 153 154 if (ia64_pal_cache_shared_info(this_leaf->level, 155 this_leaf->type, 156 0, 157 &csi) != PAL_STATUS_SUCCESS) 158 return; 159 160 num_shared = (int) csi.num_shared; 161 do { 162 for_each_possible_cpu(j) 163 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id 164 && cpu_data(j)->core_id == csi.log1_cid 165 && cpu_data(j)->thread_id == csi.log1_tid) 166 cpu_set(j, this_leaf->shared_cpu_map); 167 168 i++; 169 } while (i < num_shared && 170 ia64_pal_cache_shared_info(this_leaf->level, 171 this_leaf->type, 172 i, 173 &csi) == PAL_STATUS_SUCCESS); 174 } 175 #else 176 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, 177 struct cache_info * this_leaf) 178 { 179 cpu_set(cpu, this_leaf->shared_cpu_map); 180 return; 181 } 182 #endif 183 184 static ssize_t show_coherency_line_size(struct cache_info *this_leaf, 185 char *buf) 186 { 187 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size); 188 } 189 190 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf, 191 char *buf) 192 { 193 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc); 194 } 195 196 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf) 197 { 198 return sprintf(buf, 199 "%s\n", 200 cache_mattrib[this_leaf->cci.pcci_cache_attr]); 201 } 202 203 static ssize_t show_size(struct cache_info *this_leaf, char *buf) 204 { 205 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024); 206 } 207 208 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf) 209 { 210 unsigned number_of_sets = this_leaf->cci.pcci_cache_size; 211 number_of_sets /= this_leaf->cci.pcci_assoc; 212 number_of_sets /= 1 << this_leaf->cci.pcci_line_size; 213 214 return sprintf(buf, "%u\n", number_of_sets); 215 } 216 217 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf) 218 { 219 ssize_t len; 220 cpumask_t shared_cpu_map; 221 222 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map); 223 len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map); 224 len += sprintf(buf+len, "\n"); 225 return len; 226 } 227 228 static ssize_t show_type(struct cache_info *this_leaf, char *buf) 229 { 230 int type = this_leaf->type + this_leaf->cci.pcci_unified; 231 return sprintf(buf, "%s\n", cache_types[type]); 232 } 233 234 static ssize_t show_level(struct cache_info *this_leaf, char *buf) 235 { 236 return sprintf(buf, "%u\n", this_leaf->level); 237 } 238 239 struct cache_attr { 240 struct attribute attr; 241 ssize_t (*show)(struct cache_info *, char *); 242 ssize_t (*store)(struct cache_info *, const char *, size_t count); 243 }; 244 245 #ifdef define_one_ro 246 #undef define_one_ro 247 #endif 248 #define define_one_ro(_name) \ 249 static struct cache_attr _name = \ 250 __ATTR(_name, 0444, show_##_name, NULL) 251 252 define_one_ro(level); 253 define_one_ro(type); 254 define_one_ro(coherency_line_size); 255 define_one_ro(ways_of_associativity); 256 define_one_ro(size); 257 define_one_ro(number_of_sets); 258 define_one_ro(shared_cpu_map); 259 define_one_ro(attributes); 260 261 static struct attribute * cache_default_attrs[] = { 262 &type.attr, 263 &level.attr, 264 &coherency_line_size.attr, 265 &ways_of_associativity.attr, 266 &attributes.attr, 267 &size.attr, 268 &number_of_sets.attr, 269 &shared_cpu_map.attr, 270 NULL 271 }; 272 273 #define to_object(k) container_of(k, struct cache_info, kobj) 274 #define to_attr(a) container_of(a, struct cache_attr, attr) 275 276 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf) 277 { 278 struct cache_attr *fattr = to_attr(attr); 279 struct cache_info *this_leaf = to_object(kobj); 280 ssize_t ret; 281 282 ret = fattr->show ? fattr->show(this_leaf, buf) : 0; 283 return ret; 284 } 285 286 static const struct sysfs_ops cache_sysfs_ops = { 287 .show = cache_show 288 }; 289 290 static struct kobj_type cache_ktype = { 291 .sysfs_ops = &cache_sysfs_ops, 292 .default_attrs = cache_default_attrs, 293 }; 294 295 static struct kobj_type cache_ktype_percpu_entry = { 296 .sysfs_ops = &cache_sysfs_ops, 297 }; 298 299 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu) 300 { 301 kfree(all_cpu_cache_info[cpu].cache_leaves); 302 all_cpu_cache_info[cpu].cache_leaves = NULL; 303 all_cpu_cache_info[cpu].num_cache_leaves = 0; 304 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 305 return; 306 } 307 308 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu) 309 { 310 unsigned long i, levels, unique_caches; 311 pal_cache_config_info_t cci; 312 int j; 313 long status; 314 struct cache_info *this_cache; 315 int num_cache_leaves = 0; 316 317 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { 318 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); 319 return -1; 320 } 321 322 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches, 323 GFP_KERNEL); 324 if (this_cache == NULL) 325 return -ENOMEM; 326 327 for (i=0; i < levels; i++) { 328 for (j=2; j >0 ; j--) { 329 if ((status=ia64_pal_cache_config_info(i,j, &cci)) != 330 PAL_STATUS_SUCCESS) 331 continue; 332 333 this_cache[num_cache_leaves].cci = cci; 334 this_cache[num_cache_leaves].level = i + 1; 335 this_cache[num_cache_leaves].type = j; 336 337 cache_shared_cpu_map_setup(cpu, 338 &this_cache[num_cache_leaves]); 339 num_cache_leaves ++; 340 } 341 } 342 343 all_cpu_cache_info[cpu].cache_leaves = this_cache; 344 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves; 345 346 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 347 348 return 0; 349 } 350 351 /* Add cache interface for CPU device */ 352 static int __cpuinit cache_add_dev(struct sys_device * sys_dev) 353 { 354 unsigned int cpu = sys_dev->id; 355 unsigned long i, j; 356 struct cache_info *this_object; 357 int retval = 0; 358 cpumask_t oldmask; 359 360 if (all_cpu_cache_info[cpu].kobj.parent) 361 return 0; 362 363 oldmask = current->cpus_allowed; 364 retval = set_cpus_allowed_ptr(current, cpumask_of(cpu)); 365 if (unlikely(retval)) 366 return retval; 367 368 retval = cpu_cache_sysfs_init(cpu); 369 set_cpus_allowed_ptr(current, &oldmask); 370 if (unlikely(retval < 0)) 371 return retval; 372 373 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj, 374 &cache_ktype_percpu_entry, &sys_dev->kobj, 375 "%s", "cache"); 376 if (unlikely(retval < 0)) { 377 cpu_cache_sysfs_exit(cpu); 378 return retval; 379 } 380 381 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) { 382 this_object = LEAF_KOBJECT_PTR(cpu,i); 383 retval = kobject_init_and_add(&(this_object->kobj), 384 &cache_ktype, 385 &all_cpu_cache_info[cpu].kobj, 386 "index%1lu", i); 387 if (unlikely(retval)) { 388 for (j = 0; j < i; j++) { 389 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj)); 390 } 391 kobject_put(&all_cpu_cache_info[cpu].kobj); 392 cpu_cache_sysfs_exit(cpu); 393 return retval; 394 } 395 kobject_uevent(&(this_object->kobj), KOBJ_ADD); 396 } 397 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD); 398 return retval; 399 } 400 401 /* Remove cache interface for CPU device */ 402 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev) 403 { 404 unsigned int cpu = sys_dev->id; 405 unsigned long i; 406 407 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) 408 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj)); 409 410 if (all_cpu_cache_info[cpu].kobj.parent) { 411 kobject_put(&all_cpu_cache_info[cpu].kobj); 412 memset(&all_cpu_cache_info[cpu].kobj, 413 0, 414 sizeof(struct kobject)); 415 } 416 417 cpu_cache_sysfs_exit(cpu); 418 419 return 0; 420 } 421 422 /* 423 * When a cpu is hot-plugged, do a check and initiate 424 * cache kobject if necessary 425 */ 426 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb, 427 unsigned long action, void *hcpu) 428 { 429 unsigned int cpu = (unsigned long)hcpu; 430 struct sys_device *sys_dev; 431 432 sys_dev = get_cpu_sysdev(cpu); 433 switch (action) { 434 case CPU_ONLINE: 435 case CPU_ONLINE_FROZEN: 436 cache_add_dev(sys_dev); 437 break; 438 case CPU_DEAD: 439 case CPU_DEAD_FROZEN: 440 cache_remove_dev(sys_dev); 441 break; 442 } 443 return NOTIFY_OK; 444 } 445 446 static struct notifier_block __cpuinitdata cache_cpu_notifier = 447 { 448 .notifier_call = cache_cpu_callback 449 }; 450 451 static int __init cache_sysfs_init(void) 452 { 453 int i; 454 455 for_each_online_cpu(i) { 456 struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i); 457 cache_add_dev(sys_dev); 458 } 459 460 register_hotcpu_notifier(&cache_cpu_notifier); 461 462 return 0; 463 } 464 465 device_initcall(cache_sysfs_init); 466 467