1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * This file contains NUMA specific variables and functions which are used on 7 * NUMA machines with contiguous memory. 8 * 2002/08/07 Erich Focht <efocht@ess.nec.de> 9 * Populate cpu entries in sysfs for non-numa systems as well 10 * Intel Corporation - Ashok Raj 11 * 02/27/2006 Zhang, Yanmin 12 * Populate cpu cache entries in sysfs for cpu cache info 13 */ 14 15 #include <linux/cpu.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/node.h> 19 #include <linux/slab.h> 20 #include <linux/init.h> 21 #include <linux/memblock.h> 22 #include <linux/nodemask.h> 23 #include <linux/notifier.h> 24 #include <linux/export.h> 25 #include <asm/mmzone.h> 26 #include <asm/numa.h> 27 #include <asm/cpu.h> 28 29 static struct ia64_cpu *sysfs_cpus; 30 31 void arch_fix_phys_package_id(int num, u32 slot) 32 { 33 #ifdef CONFIG_SMP 34 if (cpu_data(num)->socket_id == -1) 35 cpu_data(num)->socket_id = slot; 36 #endif 37 } 38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id); 39 40 41 #ifdef CONFIG_HOTPLUG_CPU 42 int __ref arch_register_cpu(int num) 43 { 44 /* 45 * If CPEI can be re-targeted or if this is not 46 * CPEI target, then it is hotpluggable 47 */ 48 if (can_cpei_retarget() || !is_cpu_cpei_target(num)) 49 sysfs_cpus[num].cpu.hotpluggable = 1; 50 map_cpu_to_node(num, node_cpuid[num].nid); 51 return register_cpu(&sysfs_cpus[num].cpu, num); 52 } 53 EXPORT_SYMBOL(arch_register_cpu); 54 55 void __ref arch_unregister_cpu(int num) 56 { 57 unregister_cpu(&sysfs_cpus[num].cpu); 58 unmap_cpu_from_node(num, cpu_to_node(num)); 59 } 60 EXPORT_SYMBOL(arch_unregister_cpu); 61 #else 62 static int __init arch_register_cpu(int num) 63 { 64 return register_cpu(&sysfs_cpus[num].cpu, num); 65 } 66 #endif /*CONFIG_HOTPLUG_CPU*/ 67 68 69 static int __init topology_init(void) 70 { 71 int i, err = 0; 72 73 #ifdef CONFIG_NUMA 74 /* 75 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes? 76 */ 77 for_each_online_node(i) { 78 if ((err = register_one_node(i))) 79 goto out; 80 } 81 #endif 82 83 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL); 84 if (!sysfs_cpus) 85 panic("kzalloc in topology_init failed - NR_CPUS too big?"); 86 87 for_each_present_cpu(i) { 88 if((err = arch_register_cpu(i))) 89 goto out; 90 } 91 out: 92 return err; 93 } 94 95 subsys_initcall(topology_init); 96 97 98 /* 99 * Export cpu cache information through sysfs 100 */ 101 102 /* 103 * A bunch of string array to get pretty printing 104 */ 105 static const char *cache_types[] = { 106 "", /* not used */ 107 "Instruction", 108 "Data", 109 "Unified" /* unified */ 110 }; 111 112 static const char *cache_mattrib[]={ 113 "WriteThrough", 114 "WriteBack", 115 "", /* reserved */ 116 "" /* reserved */ 117 }; 118 119 struct cache_info { 120 pal_cache_config_info_t cci; 121 cpumask_t shared_cpu_map; 122 int level; 123 int type; 124 struct kobject kobj; 125 }; 126 127 struct cpu_cache_info { 128 struct cache_info *cache_leaves; 129 int num_cache_leaves; 130 struct kobject kobj; 131 }; 132 133 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS]; 134 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y]) 135 136 #ifdef CONFIG_SMP 137 static void cache_shared_cpu_map_setup(unsigned int cpu, 138 struct cache_info * this_leaf) 139 { 140 pal_cache_shared_info_t csi; 141 int num_shared, i = 0; 142 unsigned int j; 143 144 if (cpu_data(cpu)->threads_per_core <= 1 && 145 cpu_data(cpu)->cores_per_socket <= 1) { 146 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 147 return; 148 } 149 150 if (ia64_pal_cache_shared_info(this_leaf->level, 151 this_leaf->type, 152 0, 153 &csi) != PAL_STATUS_SUCCESS) 154 return; 155 156 num_shared = (int) csi.num_shared; 157 do { 158 for_each_possible_cpu(j) 159 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id 160 && cpu_data(j)->core_id == csi.log1_cid 161 && cpu_data(j)->thread_id == csi.log1_tid) 162 cpumask_set_cpu(j, &this_leaf->shared_cpu_map); 163 164 i++; 165 } while (i < num_shared && 166 ia64_pal_cache_shared_info(this_leaf->level, 167 this_leaf->type, 168 i, 169 &csi) == PAL_STATUS_SUCCESS); 170 } 171 #else 172 static void cache_shared_cpu_map_setup(unsigned int cpu, 173 struct cache_info * this_leaf) 174 { 175 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 176 return; 177 } 178 #endif 179 180 static ssize_t show_coherency_line_size(struct cache_info *this_leaf, 181 char *buf) 182 { 183 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size); 184 } 185 186 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf, 187 char *buf) 188 { 189 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc); 190 } 191 192 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf) 193 { 194 return sprintf(buf, 195 "%s\n", 196 cache_mattrib[this_leaf->cci.pcci_cache_attr]); 197 } 198 199 static ssize_t show_size(struct cache_info *this_leaf, char *buf) 200 { 201 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024); 202 } 203 204 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf) 205 { 206 unsigned number_of_sets = this_leaf->cci.pcci_cache_size; 207 number_of_sets /= this_leaf->cci.pcci_assoc; 208 number_of_sets /= 1 << this_leaf->cci.pcci_line_size; 209 210 return sprintf(buf, "%u\n", number_of_sets); 211 } 212 213 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf) 214 { 215 cpumask_t shared_cpu_map; 216 217 cpumask_and(&shared_cpu_map, 218 &this_leaf->shared_cpu_map, cpu_online_mask); 219 return scnprintf(buf, PAGE_SIZE, "%*pb\n", 220 cpumask_pr_args(&shared_cpu_map)); 221 } 222 223 static ssize_t show_type(struct cache_info *this_leaf, char *buf) 224 { 225 int type = this_leaf->type + this_leaf->cci.pcci_unified; 226 return sprintf(buf, "%s\n", cache_types[type]); 227 } 228 229 static ssize_t show_level(struct cache_info *this_leaf, char *buf) 230 { 231 return sprintf(buf, "%u\n", this_leaf->level); 232 } 233 234 struct cache_attr { 235 struct attribute attr; 236 ssize_t (*show)(struct cache_info *, char *); 237 ssize_t (*store)(struct cache_info *, const char *, size_t count); 238 }; 239 240 #ifdef define_one_ro 241 #undef define_one_ro 242 #endif 243 #define define_one_ro(_name) \ 244 static struct cache_attr _name = \ 245 __ATTR(_name, 0444, show_##_name, NULL) 246 247 define_one_ro(level); 248 define_one_ro(type); 249 define_one_ro(coherency_line_size); 250 define_one_ro(ways_of_associativity); 251 define_one_ro(size); 252 define_one_ro(number_of_sets); 253 define_one_ro(shared_cpu_map); 254 define_one_ro(attributes); 255 256 static struct attribute * cache_default_attrs[] = { 257 &type.attr, 258 &level.attr, 259 &coherency_line_size.attr, 260 &ways_of_associativity.attr, 261 &attributes.attr, 262 &size.attr, 263 &number_of_sets.attr, 264 &shared_cpu_map.attr, 265 NULL 266 }; 267 268 #define to_object(k) container_of(k, struct cache_info, kobj) 269 #define to_attr(a) container_of(a, struct cache_attr, attr) 270 271 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf) 272 { 273 struct cache_attr *fattr = to_attr(attr); 274 struct cache_info *this_leaf = to_object(kobj); 275 ssize_t ret; 276 277 ret = fattr->show ? fattr->show(this_leaf, buf) : 0; 278 return ret; 279 } 280 281 static const struct sysfs_ops cache_sysfs_ops = { 282 .show = ia64_cache_show 283 }; 284 285 static struct kobj_type cache_ktype = { 286 .sysfs_ops = &cache_sysfs_ops, 287 .default_attrs = cache_default_attrs, 288 }; 289 290 static struct kobj_type cache_ktype_percpu_entry = { 291 .sysfs_ops = &cache_sysfs_ops, 292 }; 293 294 static void cpu_cache_sysfs_exit(unsigned int cpu) 295 { 296 kfree(all_cpu_cache_info[cpu].cache_leaves); 297 all_cpu_cache_info[cpu].cache_leaves = NULL; 298 all_cpu_cache_info[cpu].num_cache_leaves = 0; 299 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 300 return; 301 } 302 303 static int cpu_cache_sysfs_init(unsigned int cpu) 304 { 305 unsigned long i, levels, unique_caches; 306 pal_cache_config_info_t cci; 307 int j; 308 long status; 309 struct cache_info *this_cache; 310 int num_cache_leaves = 0; 311 312 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { 313 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); 314 return -1; 315 } 316 317 this_cache=kcalloc(unique_caches, sizeof(struct cache_info), 318 GFP_KERNEL); 319 if (this_cache == NULL) 320 return -ENOMEM; 321 322 for (i=0; i < levels; i++) { 323 for (j=2; j >0 ; j--) { 324 if ((status=ia64_pal_cache_config_info(i,j, &cci)) != 325 PAL_STATUS_SUCCESS) 326 continue; 327 328 this_cache[num_cache_leaves].cci = cci; 329 this_cache[num_cache_leaves].level = i + 1; 330 this_cache[num_cache_leaves].type = j; 331 332 cache_shared_cpu_map_setup(cpu, 333 &this_cache[num_cache_leaves]); 334 num_cache_leaves ++; 335 } 336 } 337 338 all_cpu_cache_info[cpu].cache_leaves = this_cache; 339 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves; 340 341 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 342 343 return 0; 344 } 345 346 /* Add cache interface for CPU device */ 347 static int cache_add_dev(unsigned int cpu) 348 { 349 struct device *sys_dev = get_cpu_device(cpu); 350 unsigned long i, j; 351 struct cache_info *this_object; 352 int retval = 0; 353 354 if (all_cpu_cache_info[cpu].kobj.parent) 355 return 0; 356 357 358 retval = cpu_cache_sysfs_init(cpu); 359 if (unlikely(retval < 0)) 360 return retval; 361 362 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj, 363 &cache_ktype_percpu_entry, &sys_dev->kobj, 364 "%s", "cache"); 365 if (unlikely(retval < 0)) { 366 cpu_cache_sysfs_exit(cpu); 367 return retval; 368 } 369 370 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) { 371 this_object = LEAF_KOBJECT_PTR(cpu,i); 372 retval = kobject_init_and_add(&(this_object->kobj), 373 &cache_ktype, 374 &all_cpu_cache_info[cpu].kobj, 375 "index%1lu", i); 376 if (unlikely(retval)) { 377 for (j = 0; j < i; j++) { 378 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj)); 379 } 380 kobject_put(&all_cpu_cache_info[cpu].kobj); 381 cpu_cache_sysfs_exit(cpu); 382 return retval; 383 } 384 kobject_uevent(&(this_object->kobj), KOBJ_ADD); 385 } 386 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD); 387 return retval; 388 } 389 390 /* Remove cache interface for CPU device */ 391 static int cache_remove_dev(unsigned int cpu) 392 { 393 unsigned long i; 394 395 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) 396 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj)); 397 398 if (all_cpu_cache_info[cpu].kobj.parent) { 399 kobject_put(&all_cpu_cache_info[cpu].kobj); 400 memset(&all_cpu_cache_info[cpu].kobj, 401 0, 402 sizeof(struct kobject)); 403 } 404 405 cpu_cache_sysfs_exit(cpu); 406 407 return 0; 408 } 409 410 static int __init cache_sysfs_init(void) 411 { 412 int ret; 413 414 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online", 415 cache_add_dev, cache_remove_dev); 416 WARN_ON(ret < 0); 417 return 0; 418 } 419 device_initcall(cache_sysfs_init); 420