1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * This file contains NUMA specific variables and functions which are used on 7 * NUMA machines with contiguous memory. 8 * 2002/08/07 Erich Focht <efocht@ess.nec.de> 9 * Populate cpu entries in sysfs for non-numa systems as well 10 * Intel Corporation - Ashok Raj 11 * 02/27/2006 Zhang, Yanmin 12 * Populate cpu cache entries in sysfs for cpu cache info 13 */ 14 15 #include <linux/cpu.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/node.h> 19 #include <linux/slab.h> 20 #include <linux/init.h> 21 #include <linux/memblock.h> 22 #include <linux/nodemask.h> 23 #include <linux/notifier.h> 24 #include <linux/export.h> 25 #include <asm/mmzone.h> 26 #include <asm/numa.h> 27 #include <asm/cpu.h> 28 29 static struct ia64_cpu *sysfs_cpus; 30 31 void arch_fix_phys_package_id(int num, u32 slot) 32 { 33 #ifdef CONFIG_SMP 34 if (cpu_data(num)->socket_id == -1) 35 cpu_data(num)->socket_id = slot; 36 #endif 37 } 38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id); 39 40 41 #ifdef CONFIG_HOTPLUG_CPU 42 int __ref arch_register_cpu(int num) 43 { 44 /* 45 * If CPEI can be re-targeted or if this is not 46 * CPEI target, then it is hotpluggable 47 */ 48 if (can_cpei_retarget() || !is_cpu_cpei_target(num)) 49 sysfs_cpus[num].cpu.hotpluggable = 1; 50 map_cpu_to_node(num, node_cpuid[num].nid); 51 return register_cpu(&sysfs_cpus[num].cpu, num); 52 } 53 EXPORT_SYMBOL(arch_register_cpu); 54 55 void __ref arch_unregister_cpu(int num) 56 { 57 unregister_cpu(&sysfs_cpus[num].cpu); 58 unmap_cpu_from_node(num, cpu_to_node(num)); 59 } 60 EXPORT_SYMBOL(arch_unregister_cpu); 61 #else 62 static int __init arch_register_cpu(int num) 63 { 64 return register_cpu(&sysfs_cpus[num].cpu, num); 65 } 66 #endif /*CONFIG_HOTPLUG_CPU*/ 67 68 69 static int __init topology_init(void) 70 { 71 int i, err = 0; 72 73 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL); 74 if (!sysfs_cpus) 75 panic("kzalloc in topology_init failed - NR_CPUS too big?"); 76 77 for_each_present_cpu(i) { 78 if((err = arch_register_cpu(i))) 79 goto out; 80 } 81 out: 82 return err; 83 } 84 85 subsys_initcall(topology_init); 86 87 88 /* 89 * Export cpu cache information through sysfs 90 */ 91 92 /* 93 * A bunch of string array to get pretty printing 94 */ 95 static const char *cache_types[] = { 96 "", /* not used */ 97 "Instruction", 98 "Data", 99 "Unified" /* unified */ 100 }; 101 102 static const char *cache_mattrib[]={ 103 "WriteThrough", 104 "WriteBack", 105 "", /* reserved */ 106 "" /* reserved */ 107 }; 108 109 struct cache_info { 110 pal_cache_config_info_t cci; 111 cpumask_t shared_cpu_map; 112 int level; 113 int type; 114 struct kobject kobj; 115 }; 116 117 struct cpu_cache_info { 118 struct cache_info *cache_leaves; 119 int num_cache_leaves; 120 struct kobject kobj; 121 }; 122 123 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS]; 124 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y]) 125 126 #ifdef CONFIG_SMP 127 static void cache_shared_cpu_map_setup(unsigned int cpu, 128 struct cache_info * this_leaf) 129 { 130 pal_cache_shared_info_t csi; 131 int num_shared, i = 0; 132 unsigned int j; 133 134 if (cpu_data(cpu)->threads_per_core <= 1 && 135 cpu_data(cpu)->cores_per_socket <= 1) { 136 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 137 return; 138 } 139 140 if (ia64_pal_cache_shared_info(this_leaf->level, 141 this_leaf->type, 142 0, 143 &csi) != PAL_STATUS_SUCCESS) 144 return; 145 146 num_shared = (int) csi.num_shared; 147 do { 148 for_each_possible_cpu(j) 149 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id 150 && cpu_data(j)->core_id == csi.log1_cid 151 && cpu_data(j)->thread_id == csi.log1_tid) 152 cpumask_set_cpu(j, &this_leaf->shared_cpu_map); 153 154 i++; 155 } while (i < num_shared && 156 ia64_pal_cache_shared_info(this_leaf->level, 157 this_leaf->type, 158 i, 159 &csi) == PAL_STATUS_SUCCESS); 160 } 161 #else 162 static void cache_shared_cpu_map_setup(unsigned int cpu, 163 struct cache_info * this_leaf) 164 { 165 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 166 return; 167 } 168 #endif 169 170 static ssize_t show_coherency_line_size(struct cache_info *this_leaf, 171 char *buf) 172 { 173 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size); 174 } 175 176 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf, 177 char *buf) 178 { 179 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc); 180 } 181 182 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf) 183 { 184 return sprintf(buf, 185 "%s\n", 186 cache_mattrib[this_leaf->cci.pcci_cache_attr]); 187 } 188 189 static ssize_t show_size(struct cache_info *this_leaf, char *buf) 190 { 191 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024); 192 } 193 194 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf) 195 { 196 unsigned number_of_sets = this_leaf->cci.pcci_cache_size; 197 number_of_sets /= this_leaf->cci.pcci_assoc; 198 number_of_sets /= 1 << this_leaf->cci.pcci_line_size; 199 200 return sprintf(buf, "%u\n", number_of_sets); 201 } 202 203 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf) 204 { 205 cpumask_t shared_cpu_map; 206 207 cpumask_and(&shared_cpu_map, 208 &this_leaf->shared_cpu_map, cpu_online_mask); 209 return scnprintf(buf, PAGE_SIZE, "%*pb\n", 210 cpumask_pr_args(&shared_cpu_map)); 211 } 212 213 static ssize_t show_type(struct cache_info *this_leaf, char *buf) 214 { 215 int type = this_leaf->type + this_leaf->cci.pcci_unified; 216 return sprintf(buf, "%s\n", cache_types[type]); 217 } 218 219 static ssize_t show_level(struct cache_info *this_leaf, char *buf) 220 { 221 return sprintf(buf, "%u\n", this_leaf->level); 222 } 223 224 struct cache_attr { 225 struct attribute attr; 226 ssize_t (*show)(struct cache_info *, char *); 227 ssize_t (*store)(struct cache_info *, const char *, size_t count); 228 }; 229 230 #ifdef define_one_ro 231 #undef define_one_ro 232 #endif 233 #define define_one_ro(_name) \ 234 static struct cache_attr _name = \ 235 __ATTR(_name, 0444, show_##_name, NULL) 236 237 define_one_ro(level); 238 define_one_ro(type); 239 define_one_ro(coherency_line_size); 240 define_one_ro(ways_of_associativity); 241 define_one_ro(size); 242 define_one_ro(number_of_sets); 243 define_one_ro(shared_cpu_map); 244 define_one_ro(attributes); 245 246 static struct attribute * cache_default_attrs[] = { 247 &type.attr, 248 &level.attr, 249 &coherency_line_size.attr, 250 &ways_of_associativity.attr, 251 &attributes.attr, 252 &size.attr, 253 &number_of_sets.attr, 254 &shared_cpu_map.attr, 255 NULL 256 }; 257 ATTRIBUTE_GROUPS(cache_default); 258 259 #define to_object(k) container_of(k, struct cache_info, kobj) 260 #define to_attr(a) container_of(a, struct cache_attr, attr) 261 262 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf) 263 { 264 struct cache_attr *fattr = to_attr(attr); 265 struct cache_info *this_leaf = to_object(kobj); 266 ssize_t ret; 267 268 ret = fattr->show ? fattr->show(this_leaf, buf) : 0; 269 return ret; 270 } 271 272 static const struct sysfs_ops cache_sysfs_ops = { 273 .show = ia64_cache_show 274 }; 275 276 static struct kobj_type cache_ktype = { 277 .sysfs_ops = &cache_sysfs_ops, 278 .default_groups = cache_default_groups, 279 }; 280 281 static struct kobj_type cache_ktype_percpu_entry = { 282 .sysfs_ops = &cache_sysfs_ops, 283 }; 284 285 static void cpu_cache_sysfs_exit(unsigned int cpu) 286 { 287 kfree(all_cpu_cache_info[cpu].cache_leaves); 288 all_cpu_cache_info[cpu].cache_leaves = NULL; 289 all_cpu_cache_info[cpu].num_cache_leaves = 0; 290 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 291 return; 292 } 293 294 static int cpu_cache_sysfs_init(unsigned int cpu) 295 { 296 unsigned long i, levels, unique_caches; 297 pal_cache_config_info_t cci; 298 int j; 299 long status; 300 struct cache_info *this_cache; 301 int num_cache_leaves = 0; 302 303 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { 304 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); 305 return -1; 306 } 307 308 this_cache=kcalloc(unique_caches, sizeof(struct cache_info), 309 GFP_KERNEL); 310 if (this_cache == NULL) 311 return -ENOMEM; 312 313 for (i=0; i < levels; i++) { 314 for (j=2; j >0 ; j--) { 315 if ((status=ia64_pal_cache_config_info(i,j, &cci)) != 316 PAL_STATUS_SUCCESS) 317 continue; 318 319 this_cache[num_cache_leaves].cci = cci; 320 this_cache[num_cache_leaves].level = i + 1; 321 this_cache[num_cache_leaves].type = j; 322 323 cache_shared_cpu_map_setup(cpu, 324 &this_cache[num_cache_leaves]); 325 num_cache_leaves ++; 326 } 327 } 328 329 all_cpu_cache_info[cpu].cache_leaves = this_cache; 330 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves; 331 332 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 333 334 return 0; 335 } 336 337 /* Add cache interface for CPU device */ 338 static int cache_add_dev(unsigned int cpu) 339 { 340 struct device *sys_dev = get_cpu_device(cpu); 341 unsigned long i, j; 342 struct cache_info *this_object; 343 int retval = 0; 344 345 if (all_cpu_cache_info[cpu].kobj.parent) 346 return 0; 347 348 349 retval = cpu_cache_sysfs_init(cpu); 350 if (unlikely(retval < 0)) 351 return retval; 352 353 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj, 354 &cache_ktype_percpu_entry, &sys_dev->kobj, 355 "%s", "cache"); 356 if (unlikely(retval < 0)) { 357 cpu_cache_sysfs_exit(cpu); 358 return retval; 359 } 360 361 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) { 362 this_object = LEAF_KOBJECT_PTR(cpu,i); 363 retval = kobject_init_and_add(&(this_object->kobj), 364 &cache_ktype, 365 &all_cpu_cache_info[cpu].kobj, 366 "index%1lu", i); 367 if (unlikely(retval)) { 368 for (j = 0; j < i; j++) { 369 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj)); 370 } 371 kobject_put(&all_cpu_cache_info[cpu].kobj); 372 cpu_cache_sysfs_exit(cpu); 373 return retval; 374 } 375 kobject_uevent(&(this_object->kobj), KOBJ_ADD); 376 } 377 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD); 378 return retval; 379 } 380 381 /* Remove cache interface for CPU device */ 382 static int cache_remove_dev(unsigned int cpu) 383 { 384 unsigned long i; 385 386 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) 387 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj)); 388 389 if (all_cpu_cache_info[cpu].kobj.parent) { 390 kobject_put(&all_cpu_cache_info[cpu].kobj); 391 memset(&all_cpu_cache_info[cpu].kobj, 392 0, 393 sizeof(struct kobject)); 394 } 395 396 cpu_cache_sysfs_exit(cpu); 397 398 return 0; 399 } 400 401 static int __init cache_sysfs_init(void) 402 { 403 int ret; 404 405 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online", 406 cache_add_dev, cache_remove_dev); 407 WARN_ON(ret < 0); 408 return 0; 409 } 410 device_initcall(cache_sysfs_init); 411