xref: /openbmc/linux/arch/ia64/kernel/time.c (revision e3d786a3)
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/nmi.h>
20 #include <linux/interrupt.h>
21 #include <linux/efi.h>
22 #include <linux/timex.h>
23 #include <linux/timekeeper_internal.h>
24 #include <linux/platform_device.h>
25 #include <linux/sched/cputime.h>
26 
27 #include <asm/machvec.h>
28 #include <asm/delay.h>
29 #include <asm/hw_irq.h>
30 #include <asm/ptrace.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 
34 #include "fsyscall_gtod_data.h"
35 
36 static u64 itc_get_cycles(struct clocksource *cs);
37 
38 struct fsyscall_gtod_data_t fsyscall_gtod_data;
39 
40 struct itc_jitter_data_t itc_jitter_data;
41 
42 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
43 
44 #ifdef CONFIG_IA64_DEBUG_IRQ
45 
46 unsigned long last_cli_ip;
47 EXPORT_SYMBOL(last_cli_ip);
48 
49 #endif
50 
51 static struct clocksource clocksource_itc = {
52 	.name           = "itc",
53 	.rating         = 350,
54 	.read           = itc_get_cycles,
55 	.mask           = CLOCKSOURCE_MASK(64),
56 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
57 };
58 static struct clocksource *itc_clocksource;
59 
60 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
61 
62 #include <linux/kernel_stat.h>
63 
64 extern u64 cycle_to_nsec(u64 cyc);
65 
66 void vtime_flush(struct task_struct *tsk)
67 {
68 	struct thread_info *ti = task_thread_info(tsk);
69 	u64 delta;
70 
71 	if (ti->utime)
72 		account_user_time(tsk, cycle_to_nsec(ti->utime));
73 
74 	if (ti->gtime)
75 		account_guest_time(tsk, cycle_to_nsec(ti->gtime));
76 
77 	if (ti->idle_time)
78 		account_idle_time(cycle_to_nsec(ti->idle_time));
79 
80 	if (ti->stime) {
81 		delta = cycle_to_nsec(ti->stime);
82 		account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
83 	}
84 
85 	if (ti->hardirq_time) {
86 		delta = cycle_to_nsec(ti->hardirq_time);
87 		account_system_index_time(tsk, delta, CPUTIME_IRQ);
88 	}
89 
90 	if (ti->softirq_time) {
91 		delta = cycle_to_nsec(ti->softirq_time);
92 		account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
93 	}
94 
95 	ti->utime = 0;
96 	ti->gtime = 0;
97 	ti->idle_time = 0;
98 	ti->stime = 0;
99 	ti->hardirq_time = 0;
100 	ti->softirq_time = 0;
101 }
102 
103 /*
104  * Called from the context switch with interrupts disabled, to charge all
105  * accumulated times to the current process, and to prepare accounting on
106  * the next process.
107  */
108 void arch_vtime_task_switch(struct task_struct *prev)
109 {
110 	struct thread_info *pi = task_thread_info(prev);
111 	struct thread_info *ni = task_thread_info(current);
112 
113 	ni->ac_stamp = pi->ac_stamp;
114 	ni->ac_stime = ni->ac_utime = 0;
115 }
116 
117 /*
118  * Account time for a transition between system, hard irq or soft irq state.
119  * Note that this function is called with interrupts enabled.
120  */
121 static __u64 vtime_delta(struct task_struct *tsk)
122 {
123 	struct thread_info *ti = task_thread_info(tsk);
124 	__u64 now, delta_stime;
125 
126 	WARN_ON_ONCE(!irqs_disabled());
127 
128 	now = ia64_get_itc();
129 	delta_stime = now - ti->ac_stamp;
130 	ti->ac_stamp = now;
131 
132 	return delta_stime;
133 }
134 
135 void vtime_account_system(struct task_struct *tsk)
136 {
137 	struct thread_info *ti = task_thread_info(tsk);
138 	__u64 stime = vtime_delta(tsk);
139 
140 	if ((tsk->flags & PF_VCPU) && !irq_count())
141 		ti->gtime += stime;
142 	else if (hardirq_count())
143 		ti->hardirq_time += stime;
144 	else if (in_serving_softirq())
145 		ti->softirq_time += stime;
146 	else
147 		ti->stime += stime;
148 }
149 EXPORT_SYMBOL_GPL(vtime_account_system);
150 
151 void vtime_account_idle(struct task_struct *tsk)
152 {
153 	struct thread_info *ti = task_thread_info(tsk);
154 
155 	ti->idle_time += vtime_delta(tsk);
156 }
157 
158 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
159 
160 static irqreturn_t
161 timer_interrupt (int irq, void *dev_id)
162 {
163 	unsigned long new_itm;
164 
165 	if (cpu_is_offline(smp_processor_id())) {
166 		return IRQ_HANDLED;
167 	}
168 
169 	platform_timer_interrupt(irq, dev_id);
170 
171 	new_itm = local_cpu_data->itm_next;
172 
173 	if (!time_after(ia64_get_itc(), new_itm))
174 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
175 		       ia64_get_itc(), new_itm);
176 
177 	profile_tick(CPU_PROFILING);
178 
179 	while (1) {
180 		update_process_times(user_mode(get_irq_regs()));
181 
182 		new_itm += local_cpu_data->itm_delta;
183 
184 		if (smp_processor_id() == time_keeper_id)
185 			xtime_update(1);
186 
187 		local_cpu_data->itm_next = new_itm;
188 
189 		if (time_after(new_itm, ia64_get_itc()))
190 			break;
191 
192 		/*
193 		 * Allow IPIs to interrupt the timer loop.
194 		 */
195 		local_irq_enable();
196 		local_irq_disable();
197 	}
198 
199 	do {
200 		/*
201 		 * If we're too close to the next clock tick for
202 		 * comfort, we increase the safety margin by
203 		 * intentionally dropping the next tick(s).  We do NOT
204 		 * update itm.next because that would force us to call
205 		 * xtime_update() which in turn would let our clock run
206 		 * too fast (with the potentially devastating effect
207 		 * of losing monotony of time).
208 		 */
209 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
210 			new_itm += local_cpu_data->itm_delta;
211 		ia64_set_itm(new_itm);
212 		/* double check, in case we got hit by a (slow) PMI: */
213 	} while (time_after_eq(ia64_get_itc(), new_itm));
214 	return IRQ_HANDLED;
215 }
216 
217 /*
218  * Encapsulate access to the itm structure for SMP.
219  */
220 void
221 ia64_cpu_local_tick (void)
222 {
223 	int cpu = smp_processor_id();
224 	unsigned long shift = 0, delta;
225 
226 	/* arrange for the cycle counter to generate a timer interrupt: */
227 	ia64_set_itv(IA64_TIMER_VECTOR);
228 
229 	delta = local_cpu_data->itm_delta;
230 	/*
231 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
232 	 * same time:
233 	 */
234 	if (cpu) {
235 		unsigned long hi = 1UL << ia64_fls(cpu);
236 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
237 	}
238 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
239 	ia64_set_itm(local_cpu_data->itm_next);
240 }
241 
242 static int nojitter;
243 
244 static int __init nojitter_setup(char *str)
245 {
246 	nojitter = 1;
247 	printk("Jitter checking for ITC timers disabled\n");
248 	return 1;
249 }
250 
251 __setup("nojitter", nojitter_setup);
252 
253 
254 void ia64_init_itm(void)
255 {
256 	unsigned long platform_base_freq, itc_freq;
257 	struct pal_freq_ratio itc_ratio, proc_ratio;
258 	long status, platform_base_drift, itc_drift;
259 
260 	/*
261 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
262 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
263 	 * and the base frequency.
264 	 */
265 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
266 				    &platform_base_freq, &platform_base_drift);
267 	if (status != 0) {
268 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
269 	} else {
270 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
271 		if (status != 0)
272 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
273 	}
274 	if (status != 0) {
275 		/* invent "random" values */
276 		printk(KERN_ERR
277 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
278 		platform_base_freq = 100000000;
279 		platform_base_drift = -1;	/* no drift info */
280 		itc_ratio.num = 3;
281 		itc_ratio.den = 1;
282 	}
283 	if (platform_base_freq < 40000000) {
284 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
285 		       platform_base_freq);
286 		platform_base_freq = 75000000;
287 		platform_base_drift = -1;
288 	}
289 	if (!proc_ratio.den)
290 		proc_ratio.den = 1;	/* avoid division by zero */
291 	if (!itc_ratio.den)
292 		itc_ratio.den = 1;	/* avoid division by zero */
293 
294 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
295 
296 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
297 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
298 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
299 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
300 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
301 
302 	if (platform_base_drift != -1) {
303 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
304 		printk("+/-%ldppm\n", itc_drift);
305 	} else {
306 		itc_drift = -1;
307 		printk("\n");
308 	}
309 
310 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
311 	local_cpu_data->itc_freq = itc_freq;
312 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
313 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
314 					+ itc_freq/2)/itc_freq;
315 
316 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
317 #ifdef CONFIG_SMP
318 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
319 		 * Jitter compensation requires a cmpxchg which may limit
320 		 * the scalability of the syscalls for retrieving time.
321 		 * The ITC synchronization is usually successful to within a few
322 		 * ITC ticks but this is not a sure thing. If you need to improve
323 		 * timer performance in SMP situations then boot the kernel with the
324 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
325 		 * even going backward) if the ITC offsets between the individual CPUs
326 		 * are too large.
327 		 */
328 		if (!nojitter)
329 			itc_jitter_data.itc_jitter = 1;
330 #endif
331 	} else
332 		/*
333 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
334 		 * ITC values may fluctuate significantly between processors.
335 		 * Clock should not be used for hrtimers. Mark itc as only
336 		 * useful for boot and testing.
337 		 *
338 		 * Note that jitter compensation is off! There is no point of
339 		 * synchronizing ITCs since they may be large differentials
340 		 * that change over time.
341 		 *
342 		 * The only way to fix this would be to repeatedly sync the
343 		 * ITCs. Until that time we have to avoid ITC.
344 		 */
345 		clocksource_itc.rating = 50;
346 
347 	/* avoid softlock up message when cpu is unplug and plugged again. */
348 	touch_softlockup_watchdog();
349 
350 	/* Setup the CPU local timer tick */
351 	ia64_cpu_local_tick();
352 
353 	if (!itc_clocksource) {
354 		clocksource_register_hz(&clocksource_itc,
355 						local_cpu_data->itc_freq);
356 		itc_clocksource = &clocksource_itc;
357 	}
358 }
359 
360 static u64 itc_get_cycles(struct clocksource *cs)
361 {
362 	unsigned long lcycle, now, ret;
363 
364 	if (!itc_jitter_data.itc_jitter)
365 		return get_cycles();
366 
367 	lcycle = itc_jitter_data.itc_lastcycle;
368 	now = get_cycles();
369 	if (lcycle && time_after(lcycle, now))
370 		return lcycle;
371 
372 	/*
373 	 * Keep track of the last timer value returned.
374 	 * In an SMP environment, you could lose out in contention of
375 	 * cmpxchg. If so, your cmpxchg returns new value which the
376 	 * winner of contention updated to. Use the new value instead.
377 	 */
378 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
379 	if (unlikely(ret != lcycle))
380 		return ret;
381 
382 	return now;
383 }
384 
385 
386 static struct irqaction timer_irqaction = {
387 	.handler =	timer_interrupt,
388 	.flags =	IRQF_IRQPOLL,
389 	.name =		"timer"
390 };
391 
392 void read_persistent_clock64(struct timespec64 *ts)
393 {
394 	efi_gettimeofday(ts);
395 }
396 
397 void __init
398 time_init (void)
399 {
400 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
401 	ia64_init_itm();
402 }
403 
404 /*
405  * Generic udelay assumes that if preemption is allowed and the thread
406  * migrates to another CPU, that the ITC values are synchronized across
407  * all CPUs.
408  */
409 static void
410 ia64_itc_udelay (unsigned long usecs)
411 {
412 	unsigned long start = ia64_get_itc();
413 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
414 
415 	while (time_before(ia64_get_itc(), end))
416 		cpu_relax();
417 }
418 
419 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
420 
421 void
422 udelay (unsigned long usecs)
423 {
424 	(*ia64_udelay)(usecs);
425 }
426 EXPORT_SYMBOL(udelay);
427 
428 /* IA64 doesn't cache the timezone */
429 void update_vsyscall_tz(void)
430 {
431 }
432 
433 void update_vsyscall(struct timekeeper *tk)
434 {
435 	write_seqcount_begin(&fsyscall_gtod_data.seq);
436 
437 	/* copy vsyscall data */
438 	fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
439 	fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
440 	fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
441 	fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
442 	fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
443 
444 	fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
445 	fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
446 
447 	fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
448 					      + tk->wall_to_monotonic.tv_sec;
449 	fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
450 						+ ((u64)tk->wall_to_monotonic.tv_nsec
451 							<< tk->tkr_mono.shift);
452 
453 	/* normalize */
454 	while (fsyscall_gtod_data.monotonic_time.snsec >=
455 					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
456 		fsyscall_gtod_data.monotonic_time.snsec -=
457 					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
458 		fsyscall_gtod_data.monotonic_time.sec++;
459 	}
460 
461 	write_seqcount_end(&fsyscall_gtod_data.seq);
462 }
463 
464