xref: /openbmc/linux/arch/ia64/kernel/time.c (revision e2f1cf25)
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/timekeeper_internal.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/ptrace.h>
29 #include <asm/sal.h>
30 #include <asm/sections.h>
31 
32 #include "fsyscall_gtod_data.h"
33 
34 static cycle_t itc_get_cycles(struct clocksource *cs);
35 
36 struct fsyscall_gtod_data_t fsyscall_gtod_data;
37 
38 struct itc_jitter_data_t itc_jitter_data;
39 
40 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
41 
42 #ifdef CONFIG_IA64_DEBUG_IRQ
43 
44 unsigned long last_cli_ip;
45 EXPORT_SYMBOL(last_cli_ip);
46 
47 #endif
48 
49 static struct clocksource clocksource_itc = {
50 	.name           = "itc",
51 	.rating         = 350,
52 	.read           = itc_get_cycles,
53 	.mask           = CLOCKSOURCE_MASK(64),
54 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
55 };
56 static struct clocksource *itc_clocksource;
57 
58 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
59 
60 #include <linux/kernel_stat.h>
61 
62 extern cputime_t cycle_to_cputime(u64 cyc);
63 
64 void vtime_account_user(struct task_struct *tsk)
65 {
66 	cputime_t delta_utime;
67 	struct thread_info *ti = task_thread_info(tsk);
68 
69 	if (ti->ac_utime) {
70 		delta_utime = cycle_to_cputime(ti->ac_utime);
71 		account_user_time(tsk, delta_utime, delta_utime);
72 		ti->ac_utime = 0;
73 	}
74 }
75 
76 /*
77  * Called from the context switch with interrupts disabled, to charge all
78  * accumulated times to the current process, and to prepare accounting on
79  * the next process.
80  */
81 void arch_vtime_task_switch(struct task_struct *prev)
82 {
83 	struct thread_info *pi = task_thread_info(prev);
84 	struct thread_info *ni = task_thread_info(current);
85 
86 	pi->ac_stamp = ni->ac_stamp;
87 	ni->ac_stime = ni->ac_utime = 0;
88 }
89 
90 /*
91  * Account time for a transition between system, hard irq or soft irq state.
92  * Note that this function is called with interrupts enabled.
93  */
94 static cputime_t vtime_delta(struct task_struct *tsk)
95 {
96 	struct thread_info *ti = task_thread_info(tsk);
97 	cputime_t delta_stime;
98 	__u64 now;
99 
100 	WARN_ON_ONCE(!irqs_disabled());
101 
102 	now = ia64_get_itc();
103 
104 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
105 	ti->ac_stime = 0;
106 	ti->ac_stamp = now;
107 
108 	return delta_stime;
109 }
110 
111 void vtime_account_system(struct task_struct *tsk)
112 {
113 	cputime_t delta = vtime_delta(tsk);
114 
115 	account_system_time(tsk, 0, delta, delta);
116 }
117 EXPORT_SYMBOL_GPL(vtime_account_system);
118 
119 void vtime_account_idle(struct task_struct *tsk)
120 {
121 	account_idle_time(vtime_delta(tsk));
122 }
123 
124 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
125 
126 static irqreturn_t
127 timer_interrupt (int irq, void *dev_id)
128 {
129 	unsigned long new_itm;
130 
131 	if (cpu_is_offline(smp_processor_id())) {
132 		return IRQ_HANDLED;
133 	}
134 
135 	platform_timer_interrupt(irq, dev_id);
136 
137 	new_itm = local_cpu_data->itm_next;
138 
139 	if (!time_after(ia64_get_itc(), new_itm))
140 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
141 		       ia64_get_itc(), new_itm);
142 
143 	profile_tick(CPU_PROFILING);
144 
145 	while (1) {
146 		update_process_times(user_mode(get_irq_regs()));
147 
148 		new_itm += local_cpu_data->itm_delta;
149 
150 		if (smp_processor_id() == time_keeper_id)
151 			xtime_update(1);
152 
153 		local_cpu_data->itm_next = new_itm;
154 
155 		if (time_after(new_itm, ia64_get_itc()))
156 			break;
157 
158 		/*
159 		 * Allow IPIs to interrupt the timer loop.
160 		 */
161 		local_irq_enable();
162 		local_irq_disable();
163 	}
164 
165 	do {
166 		/*
167 		 * If we're too close to the next clock tick for
168 		 * comfort, we increase the safety margin by
169 		 * intentionally dropping the next tick(s).  We do NOT
170 		 * update itm.next because that would force us to call
171 		 * xtime_update() which in turn would let our clock run
172 		 * too fast (with the potentially devastating effect
173 		 * of losing monotony of time).
174 		 */
175 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
176 			new_itm += local_cpu_data->itm_delta;
177 		ia64_set_itm(new_itm);
178 		/* double check, in case we got hit by a (slow) PMI: */
179 	} while (time_after_eq(ia64_get_itc(), new_itm));
180 	return IRQ_HANDLED;
181 }
182 
183 /*
184  * Encapsulate access to the itm structure for SMP.
185  */
186 void
187 ia64_cpu_local_tick (void)
188 {
189 	int cpu = smp_processor_id();
190 	unsigned long shift = 0, delta;
191 
192 	/* arrange for the cycle counter to generate a timer interrupt: */
193 	ia64_set_itv(IA64_TIMER_VECTOR);
194 
195 	delta = local_cpu_data->itm_delta;
196 	/*
197 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
198 	 * same time:
199 	 */
200 	if (cpu) {
201 		unsigned long hi = 1UL << ia64_fls(cpu);
202 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
203 	}
204 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
205 	ia64_set_itm(local_cpu_data->itm_next);
206 }
207 
208 static int nojitter;
209 
210 static int __init nojitter_setup(char *str)
211 {
212 	nojitter = 1;
213 	printk("Jitter checking for ITC timers disabled\n");
214 	return 1;
215 }
216 
217 __setup("nojitter", nojitter_setup);
218 
219 
220 void ia64_init_itm(void)
221 {
222 	unsigned long platform_base_freq, itc_freq;
223 	struct pal_freq_ratio itc_ratio, proc_ratio;
224 	long status, platform_base_drift, itc_drift;
225 
226 	/*
227 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
228 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
229 	 * and the base frequency.
230 	 */
231 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
232 				    &platform_base_freq, &platform_base_drift);
233 	if (status != 0) {
234 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
235 	} else {
236 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
237 		if (status != 0)
238 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
239 	}
240 	if (status != 0) {
241 		/* invent "random" values */
242 		printk(KERN_ERR
243 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
244 		platform_base_freq = 100000000;
245 		platform_base_drift = -1;	/* no drift info */
246 		itc_ratio.num = 3;
247 		itc_ratio.den = 1;
248 	}
249 	if (platform_base_freq < 40000000) {
250 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
251 		       platform_base_freq);
252 		platform_base_freq = 75000000;
253 		platform_base_drift = -1;
254 	}
255 	if (!proc_ratio.den)
256 		proc_ratio.den = 1;	/* avoid division by zero */
257 	if (!itc_ratio.den)
258 		itc_ratio.den = 1;	/* avoid division by zero */
259 
260 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
261 
262 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
263 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
264 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
265 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
266 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
267 
268 	if (platform_base_drift != -1) {
269 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
270 		printk("+/-%ldppm\n", itc_drift);
271 	} else {
272 		itc_drift = -1;
273 		printk("\n");
274 	}
275 
276 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
277 	local_cpu_data->itc_freq = itc_freq;
278 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
279 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
280 					+ itc_freq/2)/itc_freq;
281 
282 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
283 #ifdef CONFIG_SMP
284 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
285 		 * Jitter compensation requires a cmpxchg which may limit
286 		 * the scalability of the syscalls for retrieving time.
287 		 * The ITC synchronization is usually successful to within a few
288 		 * ITC ticks but this is not a sure thing. If you need to improve
289 		 * timer performance in SMP situations then boot the kernel with the
290 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
291 		 * even going backward) if the ITC offsets between the individual CPUs
292 		 * are too large.
293 		 */
294 		if (!nojitter)
295 			itc_jitter_data.itc_jitter = 1;
296 #endif
297 	} else
298 		/*
299 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
300 		 * ITC values may fluctuate significantly between processors.
301 		 * Clock should not be used for hrtimers. Mark itc as only
302 		 * useful for boot and testing.
303 		 *
304 		 * Note that jitter compensation is off! There is no point of
305 		 * synchronizing ITCs since they may be large differentials
306 		 * that change over time.
307 		 *
308 		 * The only way to fix this would be to repeatedly sync the
309 		 * ITCs. Until that time we have to avoid ITC.
310 		 */
311 		clocksource_itc.rating = 50;
312 
313 	/* avoid softlock up message when cpu is unplug and plugged again. */
314 	touch_softlockup_watchdog();
315 
316 	/* Setup the CPU local timer tick */
317 	ia64_cpu_local_tick();
318 
319 	if (!itc_clocksource) {
320 		clocksource_register_hz(&clocksource_itc,
321 						local_cpu_data->itc_freq);
322 		itc_clocksource = &clocksource_itc;
323 	}
324 }
325 
326 static cycle_t itc_get_cycles(struct clocksource *cs)
327 {
328 	unsigned long lcycle, now, ret;
329 
330 	if (!itc_jitter_data.itc_jitter)
331 		return get_cycles();
332 
333 	lcycle = itc_jitter_data.itc_lastcycle;
334 	now = get_cycles();
335 	if (lcycle && time_after(lcycle, now))
336 		return lcycle;
337 
338 	/*
339 	 * Keep track of the last timer value returned.
340 	 * In an SMP environment, you could lose out in contention of
341 	 * cmpxchg. If so, your cmpxchg returns new value which the
342 	 * winner of contention updated to. Use the new value instead.
343 	 */
344 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
345 	if (unlikely(ret != lcycle))
346 		return ret;
347 
348 	return now;
349 }
350 
351 
352 static struct irqaction timer_irqaction = {
353 	.handler =	timer_interrupt,
354 	.flags =	IRQF_IRQPOLL,
355 	.name =		"timer"
356 };
357 
358 void read_persistent_clock(struct timespec *ts)
359 {
360 	efi_gettimeofday(ts);
361 }
362 
363 void __init
364 time_init (void)
365 {
366 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
367 	ia64_init_itm();
368 }
369 
370 /*
371  * Generic udelay assumes that if preemption is allowed and the thread
372  * migrates to another CPU, that the ITC values are synchronized across
373  * all CPUs.
374  */
375 static void
376 ia64_itc_udelay (unsigned long usecs)
377 {
378 	unsigned long start = ia64_get_itc();
379 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
380 
381 	while (time_before(ia64_get_itc(), end))
382 		cpu_relax();
383 }
384 
385 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
386 
387 void
388 udelay (unsigned long usecs)
389 {
390 	(*ia64_udelay)(usecs);
391 }
392 EXPORT_SYMBOL(udelay);
393 
394 /* IA64 doesn't cache the timezone */
395 void update_vsyscall_tz(void)
396 {
397 }
398 
399 void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
400 			 struct clocksource *c, u32 mult, cycle_t cycle_last)
401 {
402 	write_seqcount_begin(&fsyscall_gtod_data.seq);
403 
404         /* copy fsyscall clock data */
405         fsyscall_gtod_data.clk_mask = c->mask;
406         fsyscall_gtod_data.clk_mult = mult;
407         fsyscall_gtod_data.clk_shift = c->shift;
408         fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
409         fsyscall_gtod_data.clk_cycle_last = cycle_last;
410 
411 	/* copy kernel time structures */
412         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
413         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
414 	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
415 							+ wall->tv_sec;
416 	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
417 							+ wall->tv_nsec;
418 
419 	/* normalize */
420 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
421 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
422 		fsyscall_gtod_data.monotonic_time.tv_sec++;
423 	}
424 
425 	write_seqcount_end(&fsyscall_gtod_data.seq);
426 }
427 
428