xref: /openbmc/linux/arch/ia64/kernel/time.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 #include <asm/system.h>
33 
34 #include "fsyscall_gtod_data.h"
35 
36 static cycle_t itc_get_cycles(struct clocksource *cs);
37 
38 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
39 	.lock = SEQLOCK_UNLOCKED,
40 };
41 
42 struct itc_jitter_data_t itc_jitter_data;
43 
44 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45 
46 #ifdef CONFIG_IA64_DEBUG_IRQ
47 
48 unsigned long last_cli_ip;
49 EXPORT_SYMBOL(last_cli_ip);
50 
51 #endif
52 
53 #ifdef CONFIG_PARAVIRT
54 /* We need to define a real function for sched_clock, to override the
55    weak default version */
56 unsigned long long sched_clock(void)
57 {
58         return paravirt_sched_clock();
59 }
60 #endif
61 
62 #ifdef CONFIG_PARAVIRT
63 static void
64 paravirt_clocksource_resume(struct clocksource *cs)
65 {
66 	if (pv_time_ops.clocksource_resume)
67 		pv_time_ops.clocksource_resume();
68 }
69 #endif
70 
71 static struct clocksource clocksource_itc = {
72 	.name           = "itc",
73 	.rating         = 350,
74 	.read           = itc_get_cycles,
75 	.mask           = CLOCKSOURCE_MASK(64),
76 	.mult           = 0, /*to be calculated*/
77 	.shift          = 16,
78 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
79 #ifdef CONFIG_PARAVIRT
80 	.resume		= paravirt_clocksource_resume,
81 #endif
82 };
83 static struct clocksource *itc_clocksource;
84 
85 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
86 
87 #include <linux/kernel_stat.h>
88 
89 extern cputime_t cycle_to_cputime(u64 cyc);
90 
91 /*
92  * Called from the context switch with interrupts disabled, to charge all
93  * accumulated times to the current process, and to prepare accounting on
94  * the next process.
95  */
96 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
97 {
98 	struct thread_info *pi = task_thread_info(prev);
99 	struct thread_info *ni = task_thread_info(next);
100 	cputime_t delta_stime, delta_utime;
101 	__u64 now;
102 
103 	now = ia64_get_itc();
104 
105 	delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
106 	if (idle_task(smp_processor_id()) != prev)
107 		account_system_time(prev, 0, delta_stime, delta_stime);
108 	else
109 		account_idle_time(delta_stime);
110 
111 	if (pi->ac_utime) {
112 		delta_utime = cycle_to_cputime(pi->ac_utime);
113 		account_user_time(prev, delta_utime, delta_utime);
114 	}
115 
116 	pi->ac_stamp = ni->ac_stamp = now;
117 	ni->ac_stime = ni->ac_utime = 0;
118 }
119 
120 /*
121  * Account time for a transition between system, hard irq or soft irq state.
122  * Note that this function is called with interrupts enabled.
123  */
124 void account_system_vtime(struct task_struct *tsk)
125 {
126 	struct thread_info *ti = task_thread_info(tsk);
127 	unsigned long flags;
128 	cputime_t delta_stime;
129 	__u64 now;
130 
131 	local_irq_save(flags);
132 
133 	now = ia64_get_itc();
134 
135 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
136 	if (irq_count() || idle_task(smp_processor_id()) != tsk)
137 		account_system_time(tsk, 0, delta_stime, delta_stime);
138 	else
139 		account_idle_time(delta_stime);
140 	ti->ac_stime = 0;
141 
142 	ti->ac_stamp = now;
143 
144 	local_irq_restore(flags);
145 }
146 EXPORT_SYMBOL_GPL(account_system_vtime);
147 
148 /*
149  * Called from the timer interrupt handler to charge accumulated user time
150  * to the current process.  Must be called with interrupts disabled.
151  */
152 void account_process_tick(struct task_struct *p, int user_tick)
153 {
154 	struct thread_info *ti = task_thread_info(p);
155 	cputime_t delta_utime;
156 
157 	if (ti->ac_utime) {
158 		delta_utime = cycle_to_cputime(ti->ac_utime);
159 		account_user_time(p, delta_utime, delta_utime);
160 		ti->ac_utime = 0;
161 	}
162 }
163 
164 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
165 
166 static irqreturn_t
167 timer_interrupt (int irq, void *dev_id)
168 {
169 	unsigned long new_itm;
170 
171 	if (unlikely(cpu_is_offline(smp_processor_id()))) {
172 		return IRQ_HANDLED;
173 	}
174 
175 	platform_timer_interrupt(irq, dev_id);
176 
177 	new_itm = local_cpu_data->itm_next;
178 
179 	if (!time_after(ia64_get_itc(), new_itm))
180 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
181 		       ia64_get_itc(), new_itm);
182 
183 	profile_tick(CPU_PROFILING);
184 
185 	if (paravirt_do_steal_accounting(&new_itm))
186 		goto skip_process_time_accounting;
187 
188 	while (1) {
189 		update_process_times(user_mode(get_irq_regs()));
190 
191 		new_itm += local_cpu_data->itm_delta;
192 
193 		if (smp_processor_id() == time_keeper_id) {
194 			/*
195 			 * Here we are in the timer irq handler. We have irqs locally
196 			 * disabled, but we don't know if the timer_bh is running on
197 			 * another CPU. We need to avoid to SMP race by acquiring the
198 			 * xtime_lock.
199 			 */
200 			write_seqlock(&xtime_lock);
201 			do_timer(1);
202 			local_cpu_data->itm_next = new_itm;
203 			write_sequnlock(&xtime_lock);
204 		} else
205 			local_cpu_data->itm_next = new_itm;
206 
207 		if (time_after(new_itm, ia64_get_itc()))
208 			break;
209 
210 		/*
211 		 * Allow IPIs to interrupt the timer loop.
212 		 */
213 		local_irq_enable();
214 		local_irq_disable();
215 	}
216 
217 skip_process_time_accounting:
218 
219 	do {
220 		/*
221 		 * If we're too close to the next clock tick for
222 		 * comfort, we increase the safety margin by
223 		 * intentionally dropping the next tick(s).  We do NOT
224 		 * update itm.next because that would force us to call
225 		 * do_timer() which in turn would let our clock run
226 		 * too fast (with the potentially devastating effect
227 		 * of losing monotony of time).
228 		 */
229 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
230 			new_itm += local_cpu_data->itm_delta;
231 		ia64_set_itm(new_itm);
232 		/* double check, in case we got hit by a (slow) PMI: */
233 	} while (time_after_eq(ia64_get_itc(), new_itm));
234 	return IRQ_HANDLED;
235 }
236 
237 /*
238  * Encapsulate access to the itm structure for SMP.
239  */
240 void
241 ia64_cpu_local_tick (void)
242 {
243 	int cpu = smp_processor_id();
244 	unsigned long shift = 0, delta;
245 
246 	/* arrange for the cycle counter to generate a timer interrupt: */
247 	ia64_set_itv(IA64_TIMER_VECTOR);
248 
249 	delta = local_cpu_data->itm_delta;
250 	/*
251 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
252 	 * same time:
253 	 */
254 	if (cpu) {
255 		unsigned long hi = 1UL << ia64_fls(cpu);
256 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
257 	}
258 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
259 	ia64_set_itm(local_cpu_data->itm_next);
260 }
261 
262 static int nojitter;
263 
264 static int __init nojitter_setup(char *str)
265 {
266 	nojitter = 1;
267 	printk("Jitter checking for ITC timers disabled\n");
268 	return 1;
269 }
270 
271 __setup("nojitter", nojitter_setup);
272 
273 
274 void __devinit
275 ia64_init_itm (void)
276 {
277 	unsigned long platform_base_freq, itc_freq;
278 	struct pal_freq_ratio itc_ratio, proc_ratio;
279 	long status, platform_base_drift, itc_drift;
280 
281 	/*
282 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
283 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
284 	 * and the base frequency.
285 	 */
286 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
287 				    &platform_base_freq, &platform_base_drift);
288 	if (status != 0) {
289 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
290 	} else {
291 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
292 		if (status != 0)
293 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
294 	}
295 	if (status != 0) {
296 		/* invent "random" values */
297 		printk(KERN_ERR
298 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
299 		platform_base_freq = 100000000;
300 		platform_base_drift = -1;	/* no drift info */
301 		itc_ratio.num = 3;
302 		itc_ratio.den = 1;
303 	}
304 	if (platform_base_freq < 40000000) {
305 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
306 		       platform_base_freq);
307 		platform_base_freq = 75000000;
308 		platform_base_drift = -1;
309 	}
310 	if (!proc_ratio.den)
311 		proc_ratio.den = 1;	/* avoid division by zero */
312 	if (!itc_ratio.den)
313 		itc_ratio.den = 1;	/* avoid division by zero */
314 
315 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
316 
317 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
318 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
319 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
320 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
321 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
322 
323 	if (platform_base_drift != -1) {
324 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
325 		printk("+/-%ldppm\n", itc_drift);
326 	} else {
327 		itc_drift = -1;
328 		printk("\n");
329 	}
330 
331 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
332 	local_cpu_data->itc_freq = itc_freq;
333 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
334 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
335 					+ itc_freq/2)/itc_freq;
336 
337 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
338 #ifdef CONFIG_SMP
339 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
340 		 * Jitter compensation requires a cmpxchg which may limit
341 		 * the scalability of the syscalls for retrieving time.
342 		 * The ITC synchronization is usually successful to within a few
343 		 * ITC ticks but this is not a sure thing. If you need to improve
344 		 * timer performance in SMP situations then boot the kernel with the
345 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
346 		 * even going backward) if the ITC offsets between the individual CPUs
347 		 * are too large.
348 		 */
349 		if (!nojitter)
350 			itc_jitter_data.itc_jitter = 1;
351 #endif
352 	} else
353 		/*
354 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
355 		 * ITC values may fluctuate significantly between processors.
356 		 * Clock should not be used for hrtimers. Mark itc as only
357 		 * useful for boot and testing.
358 		 *
359 		 * Note that jitter compensation is off! There is no point of
360 		 * synchronizing ITCs since they may be large differentials
361 		 * that change over time.
362 		 *
363 		 * The only way to fix this would be to repeatedly sync the
364 		 * ITCs. Until that time we have to avoid ITC.
365 		 */
366 		clocksource_itc.rating = 50;
367 
368 	paravirt_init_missing_ticks_accounting(smp_processor_id());
369 
370 	/* avoid softlock up message when cpu is unplug and plugged again. */
371 	touch_softlockup_watchdog();
372 
373 	/* Setup the CPU local timer tick */
374 	ia64_cpu_local_tick();
375 
376 	if (!itc_clocksource) {
377 		/* Sort out mult/shift values: */
378 		clocksource_itc.mult =
379 			clocksource_hz2mult(local_cpu_data->itc_freq,
380 						clocksource_itc.shift);
381 		clocksource_register(&clocksource_itc);
382 		itc_clocksource = &clocksource_itc;
383 	}
384 }
385 
386 static cycle_t itc_get_cycles(struct clocksource *cs)
387 {
388 	unsigned long lcycle, now, ret;
389 
390 	if (!itc_jitter_data.itc_jitter)
391 		return get_cycles();
392 
393 	lcycle = itc_jitter_data.itc_lastcycle;
394 	now = get_cycles();
395 	if (lcycle && time_after(lcycle, now))
396 		return lcycle;
397 
398 	/*
399 	 * Keep track of the last timer value returned.
400 	 * In an SMP environment, you could lose out in contention of
401 	 * cmpxchg. If so, your cmpxchg returns new value which the
402 	 * winner of contention updated to. Use the new value instead.
403 	 */
404 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
405 	if (unlikely(ret != lcycle))
406 		return ret;
407 
408 	return now;
409 }
410 
411 
412 static struct irqaction timer_irqaction = {
413 	.handler =	timer_interrupt,
414 	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
415 	.name =		"timer"
416 };
417 
418 static struct platform_device rtc_efi_dev = {
419 	.name = "rtc-efi",
420 	.id = -1,
421 };
422 
423 static int __init rtc_init(void)
424 {
425 	if (platform_device_register(&rtc_efi_dev) < 0)
426 		printk(KERN_ERR "unable to register rtc device...\n");
427 
428 	/* not necessarily an error */
429 	return 0;
430 }
431 module_init(rtc_init);
432 
433 void read_persistent_clock(struct timespec *ts)
434 {
435 	efi_gettimeofday(ts);
436 }
437 
438 void __init
439 time_init (void)
440 {
441 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
442 	ia64_init_itm();
443 }
444 
445 /*
446  * Generic udelay assumes that if preemption is allowed and the thread
447  * migrates to another CPU, that the ITC values are synchronized across
448  * all CPUs.
449  */
450 static void
451 ia64_itc_udelay (unsigned long usecs)
452 {
453 	unsigned long start = ia64_get_itc();
454 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
455 
456 	while (time_before(ia64_get_itc(), end))
457 		cpu_relax();
458 }
459 
460 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
461 
462 void
463 udelay (unsigned long usecs)
464 {
465 	(*ia64_udelay)(usecs);
466 }
467 EXPORT_SYMBOL(udelay);
468 
469 /* IA64 doesn't cache the timezone */
470 void update_vsyscall_tz(void)
471 {
472 }
473 
474 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
475 			struct clocksource *c, u32 mult)
476 {
477         unsigned long flags;
478 
479         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
480 
481         /* copy fsyscall clock data */
482         fsyscall_gtod_data.clk_mask = c->mask;
483         fsyscall_gtod_data.clk_mult = mult;
484         fsyscall_gtod_data.clk_shift = c->shift;
485         fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
486         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
487 
488 	/* copy kernel time structures */
489         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
490         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
491 	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
492 							+ wall->tv_sec;
493 	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
494 							+ wall->tv_nsec;
495 
496 	/* normalize */
497 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
498 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
499 		fsyscall_gtod_data.monotonic_time.tv_sec++;
500 	}
501 
502         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
503 }
504 
505