xref: /openbmc/linux/arch/ia64/kernel/time.c (revision b6bec26c)
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/timekeeper_internal.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 
33 #include "fsyscall_gtod_data.h"
34 
35 static cycle_t itc_get_cycles(struct clocksource *cs);
36 
37 struct fsyscall_gtod_data_t fsyscall_gtod_data;
38 
39 struct itc_jitter_data_t itc_jitter_data;
40 
41 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
42 
43 #ifdef CONFIG_IA64_DEBUG_IRQ
44 
45 unsigned long last_cli_ip;
46 EXPORT_SYMBOL(last_cli_ip);
47 
48 #endif
49 
50 #ifdef CONFIG_PARAVIRT
51 /* We need to define a real function for sched_clock, to override the
52    weak default version */
53 unsigned long long sched_clock(void)
54 {
55         return paravirt_sched_clock();
56 }
57 #endif
58 
59 #ifdef CONFIG_PARAVIRT
60 static void
61 paravirt_clocksource_resume(struct clocksource *cs)
62 {
63 	if (pv_time_ops.clocksource_resume)
64 		pv_time_ops.clocksource_resume();
65 }
66 #endif
67 
68 static struct clocksource clocksource_itc = {
69 	.name           = "itc",
70 	.rating         = 350,
71 	.read           = itc_get_cycles,
72 	.mask           = CLOCKSOURCE_MASK(64),
73 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
74 #ifdef CONFIG_PARAVIRT
75 	.resume		= paravirt_clocksource_resume,
76 #endif
77 };
78 static struct clocksource *itc_clocksource;
79 
80 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
81 
82 #include <linux/kernel_stat.h>
83 
84 extern cputime_t cycle_to_cputime(u64 cyc);
85 
86 void vtime_account_user(struct task_struct *tsk)
87 {
88 	cputime_t delta_utime;
89 	struct thread_info *ti = task_thread_info(tsk);
90 
91 	if (ti->ac_utime) {
92 		delta_utime = cycle_to_cputime(ti->ac_utime);
93 		account_user_time(tsk, delta_utime, delta_utime);
94 		ti->ac_utime = 0;
95 	}
96 }
97 
98 /*
99  * Called from the context switch with interrupts disabled, to charge all
100  * accumulated times to the current process, and to prepare accounting on
101  * the next process.
102  */
103 void arch_vtime_task_switch(struct task_struct *prev)
104 {
105 	struct thread_info *pi = task_thread_info(prev);
106 	struct thread_info *ni = task_thread_info(current);
107 
108 	pi->ac_stamp = ni->ac_stamp;
109 	ni->ac_stime = ni->ac_utime = 0;
110 }
111 
112 /*
113  * Account time for a transition between system, hard irq or soft irq state.
114  * Note that this function is called with interrupts enabled.
115  */
116 static cputime_t vtime_delta(struct task_struct *tsk)
117 {
118 	struct thread_info *ti = task_thread_info(tsk);
119 	cputime_t delta_stime;
120 	__u64 now;
121 
122 	WARN_ON_ONCE(!irqs_disabled());
123 
124 	now = ia64_get_itc();
125 
126 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
127 	ti->ac_stime = 0;
128 	ti->ac_stamp = now;
129 
130 	return delta_stime;
131 }
132 
133 void vtime_account_system(struct task_struct *tsk)
134 {
135 	cputime_t delta = vtime_delta(tsk);
136 
137 	account_system_time(tsk, 0, delta, delta);
138 }
139 
140 void vtime_account_idle(struct task_struct *tsk)
141 {
142 	account_idle_time(vtime_delta(tsk));
143 }
144 
145 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
146 
147 static irqreturn_t
148 timer_interrupt (int irq, void *dev_id)
149 {
150 	unsigned long new_itm;
151 
152 	if (cpu_is_offline(smp_processor_id())) {
153 		return IRQ_HANDLED;
154 	}
155 
156 	platform_timer_interrupt(irq, dev_id);
157 
158 	new_itm = local_cpu_data->itm_next;
159 
160 	if (!time_after(ia64_get_itc(), new_itm))
161 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
162 		       ia64_get_itc(), new_itm);
163 
164 	profile_tick(CPU_PROFILING);
165 
166 	if (paravirt_do_steal_accounting(&new_itm))
167 		goto skip_process_time_accounting;
168 
169 	while (1) {
170 		update_process_times(user_mode(get_irq_regs()));
171 
172 		new_itm += local_cpu_data->itm_delta;
173 
174 		if (smp_processor_id() == time_keeper_id)
175 			xtime_update(1);
176 
177 		local_cpu_data->itm_next = new_itm;
178 
179 		if (time_after(new_itm, ia64_get_itc()))
180 			break;
181 
182 		/*
183 		 * Allow IPIs to interrupt the timer loop.
184 		 */
185 		local_irq_enable();
186 		local_irq_disable();
187 	}
188 
189 skip_process_time_accounting:
190 
191 	do {
192 		/*
193 		 * If we're too close to the next clock tick for
194 		 * comfort, we increase the safety margin by
195 		 * intentionally dropping the next tick(s).  We do NOT
196 		 * update itm.next because that would force us to call
197 		 * xtime_update() which in turn would let our clock run
198 		 * too fast (with the potentially devastating effect
199 		 * of losing monotony of time).
200 		 */
201 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
202 			new_itm += local_cpu_data->itm_delta;
203 		ia64_set_itm(new_itm);
204 		/* double check, in case we got hit by a (slow) PMI: */
205 	} while (time_after_eq(ia64_get_itc(), new_itm));
206 	return IRQ_HANDLED;
207 }
208 
209 /*
210  * Encapsulate access to the itm structure for SMP.
211  */
212 void
213 ia64_cpu_local_tick (void)
214 {
215 	int cpu = smp_processor_id();
216 	unsigned long shift = 0, delta;
217 
218 	/* arrange for the cycle counter to generate a timer interrupt: */
219 	ia64_set_itv(IA64_TIMER_VECTOR);
220 
221 	delta = local_cpu_data->itm_delta;
222 	/*
223 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
224 	 * same time:
225 	 */
226 	if (cpu) {
227 		unsigned long hi = 1UL << ia64_fls(cpu);
228 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
229 	}
230 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
231 	ia64_set_itm(local_cpu_data->itm_next);
232 }
233 
234 static int nojitter;
235 
236 static int __init nojitter_setup(char *str)
237 {
238 	nojitter = 1;
239 	printk("Jitter checking for ITC timers disabled\n");
240 	return 1;
241 }
242 
243 __setup("nojitter", nojitter_setup);
244 
245 
246 void ia64_init_itm(void)
247 {
248 	unsigned long platform_base_freq, itc_freq;
249 	struct pal_freq_ratio itc_ratio, proc_ratio;
250 	long status, platform_base_drift, itc_drift;
251 
252 	/*
253 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
254 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
255 	 * and the base frequency.
256 	 */
257 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
258 				    &platform_base_freq, &platform_base_drift);
259 	if (status != 0) {
260 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
261 	} else {
262 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
263 		if (status != 0)
264 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
265 	}
266 	if (status != 0) {
267 		/* invent "random" values */
268 		printk(KERN_ERR
269 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
270 		platform_base_freq = 100000000;
271 		platform_base_drift = -1;	/* no drift info */
272 		itc_ratio.num = 3;
273 		itc_ratio.den = 1;
274 	}
275 	if (platform_base_freq < 40000000) {
276 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
277 		       platform_base_freq);
278 		platform_base_freq = 75000000;
279 		platform_base_drift = -1;
280 	}
281 	if (!proc_ratio.den)
282 		proc_ratio.den = 1;	/* avoid division by zero */
283 	if (!itc_ratio.den)
284 		itc_ratio.den = 1;	/* avoid division by zero */
285 
286 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
287 
288 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
289 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
290 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
291 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
292 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
293 
294 	if (platform_base_drift != -1) {
295 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
296 		printk("+/-%ldppm\n", itc_drift);
297 	} else {
298 		itc_drift = -1;
299 		printk("\n");
300 	}
301 
302 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
303 	local_cpu_data->itc_freq = itc_freq;
304 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
305 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
306 					+ itc_freq/2)/itc_freq;
307 
308 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
309 #ifdef CONFIG_SMP
310 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
311 		 * Jitter compensation requires a cmpxchg which may limit
312 		 * the scalability of the syscalls for retrieving time.
313 		 * The ITC synchronization is usually successful to within a few
314 		 * ITC ticks but this is not a sure thing. If you need to improve
315 		 * timer performance in SMP situations then boot the kernel with the
316 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
317 		 * even going backward) if the ITC offsets between the individual CPUs
318 		 * are too large.
319 		 */
320 		if (!nojitter)
321 			itc_jitter_data.itc_jitter = 1;
322 #endif
323 	} else
324 		/*
325 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
326 		 * ITC values may fluctuate significantly between processors.
327 		 * Clock should not be used for hrtimers. Mark itc as only
328 		 * useful for boot and testing.
329 		 *
330 		 * Note that jitter compensation is off! There is no point of
331 		 * synchronizing ITCs since they may be large differentials
332 		 * that change over time.
333 		 *
334 		 * The only way to fix this would be to repeatedly sync the
335 		 * ITCs. Until that time we have to avoid ITC.
336 		 */
337 		clocksource_itc.rating = 50;
338 
339 	paravirt_init_missing_ticks_accounting(smp_processor_id());
340 
341 	/* avoid softlock up message when cpu is unplug and plugged again. */
342 	touch_softlockup_watchdog();
343 
344 	/* Setup the CPU local timer tick */
345 	ia64_cpu_local_tick();
346 
347 	if (!itc_clocksource) {
348 		clocksource_register_hz(&clocksource_itc,
349 						local_cpu_data->itc_freq);
350 		itc_clocksource = &clocksource_itc;
351 	}
352 }
353 
354 static cycle_t itc_get_cycles(struct clocksource *cs)
355 {
356 	unsigned long lcycle, now, ret;
357 
358 	if (!itc_jitter_data.itc_jitter)
359 		return get_cycles();
360 
361 	lcycle = itc_jitter_data.itc_lastcycle;
362 	now = get_cycles();
363 	if (lcycle && time_after(lcycle, now))
364 		return lcycle;
365 
366 	/*
367 	 * Keep track of the last timer value returned.
368 	 * In an SMP environment, you could lose out in contention of
369 	 * cmpxchg. If so, your cmpxchg returns new value which the
370 	 * winner of contention updated to. Use the new value instead.
371 	 */
372 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
373 	if (unlikely(ret != lcycle))
374 		return ret;
375 
376 	return now;
377 }
378 
379 
380 static struct irqaction timer_irqaction = {
381 	.handler =	timer_interrupt,
382 	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
383 	.name =		"timer"
384 };
385 
386 static struct platform_device rtc_efi_dev = {
387 	.name = "rtc-efi",
388 	.id = -1,
389 };
390 
391 static int __init rtc_init(void)
392 {
393 	if (platform_device_register(&rtc_efi_dev) < 0)
394 		printk(KERN_ERR "unable to register rtc device...\n");
395 
396 	/* not necessarily an error */
397 	return 0;
398 }
399 module_init(rtc_init);
400 
401 void read_persistent_clock(struct timespec *ts)
402 {
403 	efi_gettimeofday(ts);
404 }
405 
406 void __init
407 time_init (void)
408 {
409 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
410 	ia64_init_itm();
411 }
412 
413 /*
414  * Generic udelay assumes that if preemption is allowed and the thread
415  * migrates to another CPU, that the ITC values are synchronized across
416  * all CPUs.
417  */
418 static void
419 ia64_itc_udelay (unsigned long usecs)
420 {
421 	unsigned long start = ia64_get_itc();
422 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
423 
424 	while (time_before(ia64_get_itc(), end))
425 		cpu_relax();
426 }
427 
428 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
429 
430 void
431 udelay (unsigned long usecs)
432 {
433 	(*ia64_udelay)(usecs);
434 }
435 EXPORT_SYMBOL(udelay);
436 
437 /* IA64 doesn't cache the timezone */
438 void update_vsyscall_tz(void)
439 {
440 }
441 
442 void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
443 			struct clocksource *c, u32 mult)
444 {
445 	write_seqcount_begin(&fsyscall_gtod_data.seq);
446 
447         /* copy fsyscall clock data */
448         fsyscall_gtod_data.clk_mask = c->mask;
449         fsyscall_gtod_data.clk_mult = mult;
450         fsyscall_gtod_data.clk_shift = c->shift;
451         fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
452         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
453 
454 	/* copy kernel time structures */
455         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
456         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
457 	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
458 							+ wall->tv_sec;
459 	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
460 							+ wall->tv_nsec;
461 
462 	/* normalize */
463 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
464 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
465 		fsyscall_gtod_data.monotonic_time.tv_sec++;
466 	}
467 
468 	write_seqcount_end(&fsyscall_gtod_data.seq);
469 }
470 
471