xref: /openbmc/linux/arch/ia64/kernel/time.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/ia64/kernel/time.c
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  *	David Mosberger <davidm@hpl.hp.com>
8  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
9  * Copyright (C) 1999-2000 VA Linux Systems
10  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
11  */
12 
13 #include <linux/cpu.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/nmi.h>
21 #include <linux/interrupt.h>
22 #include <linux/efi.h>
23 #include <linux/timex.h>
24 #include <linux/timekeeper_internal.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched/cputime.h>
27 
28 #include <asm/delay.h>
29 #include <asm/efi.h>
30 #include <asm/hw_irq.h>
31 #include <asm/ptrace.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 
35 #include "fsyscall_gtod_data.h"
36 #include "irq.h"
37 
38 static u64 itc_get_cycles(struct clocksource *cs);
39 
40 struct fsyscall_gtod_data_t fsyscall_gtod_data;
41 
42 struct itc_jitter_data_t itc_jitter_data;
43 
44 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45 
46 #ifdef CONFIG_IA64_DEBUG_IRQ
47 
48 unsigned long last_cli_ip;
49 EXPORT_SYMBOL(last_cli_ip);
50 
51 #endif
52 
53 static struct clocksource clocksource_itc = {
54 	.name           = "itc",
55 	.rating         = 350,
56 	.read           = itc_get_cycles,
57 	.mask           = CLOCKSOURCE_MASK(64),
58 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
59 };
60 static struct clocksource *itc_clocksource;
61 
62 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
63 
64 #include <linux/kernel_stat.h>
65 
66 extern u64 cycle_to_nsec(u64 cyc);
67 
68 void vtime_flush(struct task_struct *tsk)
69 {
70 	struct thread_info *ti = task_thread_info(tsk);
71 	u64 delta;
72 
73 	if (ti->utime)
74 		account_user_time(tsk, cycle_to_nsec(ti->utime));
75 
76 	if (ti->gtime)
77 		account_guest_time(tsk, cycle_to_nsec(ti->gtime));
78 
79 	if (ti->idle_time)
80 		account_idle_time(cycle_to_nsec(ti->idle_time));
81 
82 	if (ti->stime) {
83 		delta = cycle_to_nsec(ti->stime);
84 		account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
85 	}
86 
87 	if (ti->hardirq_time) {
88 		delta = cycle_to_nsec(ti->hardirq_time);
89 		account_system_index_time(tsk, delta, CPUTIME_IRQ);
90 	}
91 
92 	if (ti->softirq_time) {
93 		delta = cycle_to_nsec(ti->softirq_time);
94 		account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
95 	}
96 
97 	ti->utime = 0;
98 	ti->gtime = 0;
99 	ti->idle_time = 0;
100 	ti->stime = 0;
101 	ti->hardirq_time = 0;
102 	ti->softirq_time = 0;
103 }
104 
105 /*
106  * Called from the context switch with interrupts disabled, to charge all
107  * accumulated times to the current process, and to prepare accounting on
108  * the next process.
109  */
110 void arch_vtime_task_switch(struct task_struct *prev)
111 {
112 	struct thread_info *pi = task_thread_info(prev);
113 	struct thread_info *ni = task_thread_info(current);
114 
115 	ni->ac_stamp = pi->ac_stamp;
116 	ni->ac_stime = ni->ac_utime = 0;
117 }
118 
119 /*
120  * Account time for a transition between system, hard irq or soft irq state.
121  * Note that this function is called with interrupts enabled.
122  */
123 static __u64 vtime_delta(struct task_struct *tsk)
124 {
125 	struct thread_info *ti = task_thread_info(tsk);
126 	__u64 now, delta_stime;
127 
128 	WARN_ON_ONCE(!irqs_disabled());
129 
130 	now = ia64_get_itc();
131 	delta_stime = now - ti->ac_stamp;
132 	ti->ac_stamp = now;
133 
134 	return delta_stime;
135 }
136 
137 void vtime_account_kernel(struct task_struct *tsk)
138 {
139 	struct thread_info *ti = task_thread_info(tsk);
140 	__u64 stime = vtime_delta(tsk);
141 
142 	if (tsk->flags & PF_VCPU)
143 		ti->gtime += stime;
144 	else
145 		ti->stime += stime;
146 }
147 EXPORT_SYMBOL_GPL(vtime_account_kernel);
148 
149 void vtime_account_idle(struct task_struct *tsk)
150 {
151 	struct thread_info *ti = task_thread_info(tsk);
152 
153 	ti->idle_time += vtime_delta(tsk);
154 }
155 
156 void vtime_account_softirq(struct task_struct *tsk)
157 {
158 	struct thread_info *ti = task_thread_info(tsk);
159 
160 	ti->softirq_time += vtime_delta(tsk);
161 }
162 
163 void vtime_account_hardirq(struct task_struct *tsk)
164 {
165 	struct thread_info *ti = task_thread_info(tsk);
166 
167 	ti->hardirq_time += vtime_delta(tsk);
168 }
169 
170 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
171 
172 static irqreturn_t
173 timer_interrupt (int irq, void *dev_id)
174 {
175 	unsigned long new_itm;
176 
177 	if (cpu_is_offline(smp_processor_id())) {
178 		return IRQ_HANDLED;
179 	}
180 
181 	new_itm = local_cpu_data->itm_next;
182 
183 	if (!time_after(ia64_get_itc(), new_itm))
184 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
185 		       ia64_get_itc(), new_itm);
186 
187 	while (1) {
188 		new_itm += local_cpu_data->itm_delta;
189 
190 		legacy_timer_tick(smp_processor_id() == time_keeper_id);
191 
192 		local_cpu_data->itm_next = new_itm;
193 
194 		if (time_after(new_itm, ia64_get_itc()))
195 			break;
196 
197 		/*
198 		 * Allow IPIs to interrupt the timer loop.
199 		 */
200 		local_irq_enable();
201 		local_irq_disable();
202 	}
203 
204 	do {
205 		/*
206 		 * If we're too close to the next clock tick for
207 		 * comfort, we increase the safety margin by
208 		 * intentionally dropping the next tick(s).  We do NOT
209 		 * update itm.next because that would force us to call
210 		 * xtime_update() which in turn would let our clock run
211 		 * too fast (with the potentially devastating effect
212 		 * of losing monotony of time).
213 		 */
214 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
215 			new_itm += local_cpu_data->itm_delta;
216 		ia64_set_itm(new_itm);
217 		/* double check, in case we got hit by a (slow) PMI: */
218 	} while (time_after_eq(ia64_get_itc(), new_itm));
219 	return IRQ_HANDLED;
220 }
221 
222 /*
223  * Encapsulate access to the itm structure for SMP.
224  */
225 void
226 ia64_cpu_local_tick (void)
227 {
228 	int cpu = smp_processor_id();
229 	unsigned long shift = 0, delta;
230 
231 	/* arrange for the cycle counter to generate a timer interrupt: */
232 	ia64_set_itv(IA64_TIMER_VECTOR);
233 
234 	delta = local_cpu_data->itm_delta;
235 	/*
236 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
237 	 * same time:
238 	 */
239 	if (cpu) {
240 		unsigned long hi = 1UL << ia64_fls(cpu);
241 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
242 	}
243 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
244 	ia64_set_itm(local_cpu_data->itm_next);
245 }
246 
247 static int nojitter;
248 
249 static int __init nojitter_setup(char *str)
250 {
251 	nojitter = 1;
252 	printk("Jitter checking for ITC timers disabled\n");
253 	return 1;
254 }
255 
256 __setup("nojitter", nojitter_setup);
257 
258 
259 void ia64_init_itm(void)
260 {
261 	unsigned long platform_base_freq, itc_freq;
262 	struct pal_freq_ratio itc_ratio, proc_ratio;
263 	long status, platform_base_drift, itc_drift;
264 
265 	/*
266 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
267 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
268 	 * and the base frequency.
269 	 */
270 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
271 				    &platform_base_freq, &platform_base_drift);
272 	if (status != 0) {
273 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
274 	} else {
275 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
276 		if (status != 0)
277 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
278 	}
279 	if (status != 0) {
280 		/* invent "random" values */
281 		printk(KERN_ERR
282 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
283 		platform_base_freq = 100000000;
284 		platform_base_drift = -1;	/* no drift info */
285 		itc_ratio.num = 3;
286 		itc_ratio.den = 1;
287 	}
288 	if (platform_base_freq < 40000000) {
289 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
290 		       platform_base_freq);
291 		platform_base_freq = 75000000;
292 		platform_base_drift = -1;
293 	}
294 	if (!proc_ratio.den)
295 		proc_ratio.den = 1;	/* avoid division by zero */
296 	if (!itc_ratio.den)
297 		itc_ratio.den = 1;	/* avoid division by zero */
298 
299 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
300 
301 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
302 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
303 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
304 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
305 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
306 
307 	if (platform_base_drift != -1) {
308 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
309 		printk("+/-%ldppm\n", itc_drift);
310 	} else {
311 		itc_drift = -1;
312 		printk("\n");
313 	}
314 
315 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
316 	local_cpu_data->itc_freq = itc_freq;
317 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
318 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
319 					+ itc_freq/2)/itc_freq;
320 
321 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
322 #ifdef CONFIG_SMP
323 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
324 		 * Jitter compensation requires a cmpxchg which may limit
325 		 * the scalability of the syscalls for retrieving time.
326 		 * The ITC synchronization is usually successful to within a few
327 		 * ITC ticks but this is not a sure thing. If you need to improve
328 		 * timer performance in SMP situations then boot the kernel with the
329 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
330 		 * even going backward) if the ITC offsets between the individual CPUs
331 		 * are too large.
332 		 */
333 		if (!nojitter)
334 			itc_jitter_data.itc_jitter = 1;
335 #endif
336 	} else
337 		/*
338 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
339 		 * ITC values may fluctuate significantly between processors.
340 		 * Clock should not be used for hrtimers. Mark itc as only
341 		 * useful for boot and testing.
342 		 *
343 		 * Note that jitter compensation is off! There is no point of
344 		 * synchronizing ITCs since they may be large differentials
345 		 * that change over time.
346 		 *
347 		 * The only way to fix this would be to repeatedly sync the
348 		 * ITCs. Until that time we have to avoid ITC.
349 		 */
350 		clocksource_itc.rating = 50;
351 
352 	/* avoid softlock up message when cpu is unplug and plugged again. */
353 	touch_softlockup_watchdog();
354 
355 	/* Setup the CPU local timer tick */
356 	ia64_cpu_local_tick();
357 
358 	if (!itc_clocksource) {
359 		clocksource_register_hz(&clocksource_itc,
360 						local_cpu_data->itc_freq);
361 		itc_clocksource = &clocksource_itc;
362 	}
363 }
364 
365 static u64 itc_get_cycles(struct clocksource *cs)
366 {
367 	unsigned long lcycle, now, ret;
368 
369 	if (!itc_jitter_data.itc_jitter)
370 		return get_cycles();
371 
372 	lcycle = itc_jitter_data.itc_lastcycle;
373 	now = get_cycles();
374 	if (lcycle && time_after(lcycle, now))
375 		return lcycle;
376 
377 	/*
378 	 * Keep track of the last timer value returned.
379 	 * In an SMP environment, you could lose out in contention of
380 	 * cmpxchg. If so, your cmpxchg returns new value which the
381 	 * winner of contention updated to. Use the new value instead.
382 	 */
383 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
384 	if (unlikely(ret != lcycle))
385 		return ret;
386 
387 	return now;
388 }
389 
390 void read_persistent_clock64(struct timespec64 *ts)
391 {
392 	efi_gettimeofday(ts);
393 }
394 
395 void __init
396 time_init (void)
397 {
398 	register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
399 			    "timer");
400 	ia64_init_itm();
401 }
402 
403 /*
404  * Generic udelay assumes that if preemption is allowed and the thread
405  * migrates to another CPU, that the ITC values are synchronized across
406  * all CPUs.
407  */
408 static void
409 ia64_itc_udelay (unsigned long usecs)
410 {
411 	unsigned long start = ia64_get_itc();
412 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
413 
414 	while (time_before(ia64_get_itc(), end))
415 		cpu_relax();
416 }
417 
418 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
419 
420 void
421 udelay (unsigned long usecs)
422 {
423 	(*ia64_udelay)(usecs);
424 }
425 EXPORT_SYMBOL(udelay);
426 
427 /* IA64 doesn't cache the timezone */
428 void update_vsyscall_tz(void)
429 {
430 }
431 
432 void update_vsyscall(struct timekeeper *tk)
433 {
434 	write_seqcount_begin(&fsyscall_gtod_data.seq);
435 
436 	/* copy vsyscall data */
437 	fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
438 	fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
439 	fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
440 	fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
441 	fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
442 
443 	fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
444 	fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
445 
446 	fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
447 					      + tk->wall_to_monotonic.tv_sec;
448 	fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
449 						+ ((u64)tk->wall_to_monotonic.tv_nsec
450 							<< tk->tkr_mono.shift);
451 
452 	/* normalize */
453 	while (fsyscall_gtod_data.monotonic_time.snsec >=
454 					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
455 		fsyscall_gtod_data.monotonic_time.snsec -=
456 					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
457 		fsyscall_gtod_data.monotonic_time.sec++;
458 	}
459 
460 	write_seqcount_end(&fsyscall_gtod_data.seq);
461 }
462 
463