1 /* 2 * linux/arch/ia64/kernel/time.c 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * Stephane Eranian <eranian@hpl.hp.com> 6 * David Mosberger <davidm@hpl.hp.com> 7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> 8 * Copyright (C) 1999-2000 VA Linux Systems 9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com> 10 */ 11 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/profile.h> 17 #include <linux/sched.h> 18 #include <linux/time.h> 19 #include <linux/interrupt.h> 20 #include <linux/efi.h> 21 #include <linux/timex.h> 22 #include <linux/clocksource.h> 23 24 #include <asm/machvec.h> 25 #include <asm/delay.h> 26 #include <asm/hw_irq.h> 27 #include <asm/paravirt.h> 28 #include <asm/ptrace.h> 29 #include <asm/sal.h> 30 #include <asm/sections.h> 31 #include <asm/system.h> 32 33 #include "fsyscall_gtod_data.h" 34 35 static cycle_t itc_get_cycles(void); 36 37 struct fsyscall_gtod_data_t fsyscall_gtod_data = { 38 .lock = SEQLOCK_UNLOCKED, 39 }; 40 41 struct itc_jitter_data_t itc_jitter_data; 42 43 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */ 44 45 #ifdef CONFIG_IA64_DEBUG_IRQ 46 47 unsigned long last_cli_ip; 48 EXPORT_SYMBOL(last_cli_ip); 49 50 #endif 51 52 #ifdef CONFIG_PARAVIRT 53 static void 54 paravirt_clocksource_resume(void) 55 { 56 if (pv_time_ops.clocksource_resume) 57 pv_time_ops.clocksource_resume(); 58 } 59 #endif 60 61 static struct clocksource clocksource_itc = { 62 .name = "itc", 63 .rating = 350, 64 .read = itc_get_cycles, 65 .mask = CLOCKSOURCE_MASK(64), 66 .mult = 0, /*to be calculated*/ 67 .shift = 16, 68 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 69 #ifdef CONFIG_PARAVIRT 70 .resume = paravirt_clocksource_resume, 71 #endif 72 }; 73 static struct clocksource *itc_clocksource; 74 75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 76 77 #include <linux/kernel_stat.h> 78 79 extern cputime_t cycle_to_cputime(u64 cyc); 80 81 /* 82 * Called from the context switch with interrupts disabled, to charge all 83 * accumulated times to the current process, and to prepare accounting on 84 * the next process. 85 */ 86 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next) 87 { 88 struct thread_info *pi = task_thread_info(prev); 89 struct thread_info *ni = task_thread_info(next); 90 cputime_t delta_stime, delta_utime; 91 __u64 now; 92 93 now = ia64_get_itc(); 94 95 delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp)); 96 account_system_time(prev, 0, delta_stime); 97 account_system_time_scaled(prev, delta_stime); 98 99 if (pi->ac_utime) { 100 delta_utime = cycle_to_cputime(pi->ac_utime); 101 account_user_time(prev, delta_utime); 102 account_user_time_scaled(prev, delta_utime); 103 } 104 105 pi->ac_stamp = ni->ac_stamp = now; 106 ni->ac_stime = ni->ac_utime = 0; 107 } 108 109 /* 110 * Account time for a transition between system, hard irq or soft irq state. 111 * Note that this function is called with interrupts enabled. 112 */ 113 void account_system_vtime(struct task_struct *tsk) 114 { 115 struct thread_info *ti = task_thread_info(tsk); 116 unsigned long flags; 117 cputime_t delta_stime; 118 __u64 now; 119 120 local_irq_save(flags); 121 122 now = ia64_get_itc(); 123 124 delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp)); 125 account_system_time(tsk, 0, delta_stime); 126 account_system_time_scaled(tsk, delta_stime); 127 ti->ac_stime = 0; 128 129 ti->ac_stamp = now; 130 131 local_irq_restore(flags); 132 } 133 EXPORT_SYMBOL_GPL(account_system_vtime); 134 135 /* 136 * Called from the timer interrupt handler to charge accumulated user time 137 * to the current process. Must be called with interrupts disabled. 138 */ 139 void account_process_tick(struct task_struct *p, int user_tick) 140 { 141 struct thread_info *ti = task_thread_info(p); 142 cputime_t delta_utime; 143 144 if (ti->ac_utime) { 145 delta_utime = cycle_to_cputime(ti->ac_utime); 146 account_user_time(p, delta_utime); 147 account_user_time_scaled(p, delta_utime); 148 ti->ac_utime = 0; 149 } 150 } 151 152 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 153 154 static irqreturn_t 155 timer_interrupt (int irq, void *dev_id) 156 { 157 unsigned long new_itm; 158 159 if (unlikely(cpu_is_offline(smp_processor_id()))) { 160 return IRQ_HANDLED; 161 } 162 163 platform_timer_interrupt(irq, dev_id); 164 165 new_itm = local_cpu_data->itm_next; 166 167 if (!time_after(ia64_get_itc(), new_itm)) 168 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n", 169 ia64_get_itc(), new_itm); 170 171 profile_tick(CPU_PROFILING); 172 173 if (paravirt_do_steal_accounting(&new_itm)) 174 goto skip_process_time_accounting; 175 176 while (1) { 177 update_process_times(user_mode(get_irq_regs())); 178 179 new_itm += local_cpu_data->itm_delta; 180 181 if (smp_processor_id() == time_keeper_id) { 182 /* 183 * Here we are in the timer irq handler. We have irqs locally 184 * disabled, but we don't know if the timer_bh is running on 185 * another CPU. We need to avoid to SMP race by acquiring the 186 * xtime_lock. 187 */ 188 write_seqlock(&xtime_lock); 189 do_timer(1); 190 local_cpu_data->itm_next = new_itm; 191 write_sequnlock(&xtime_lock); 192 } else 193 local_cpu_data->itm_next = new_itm; 194 195 if (time_after(new_itm, ia64_get_itc())) 196 break; 197 198 /* 199 * Allow IPIs to interrupt the timer loop. 200 */ 201 local_irq_enable(); 202 local_irq_disable(); 203 } 204 205 skip_process_time_accounting: 206 207 do { 208 /* 209 * If we're too close to the next clock tick for 210 * comfort, we increase the safety margin by 211 * intentionally dropping the next tick(s). We do NOT 212 * update itm.next because that would force us to call 213 * do_timer() which in turn would let our clock run 214 * too fast (with the potentially devastating effect 215 * of losing monotony of time). 216 */ 217 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2)) 218 new_itm += local_cpu_data->itm_delta; 219 ia64_set_itm(new_itm); 220 /* double check, in case we got hit by a (slow) PMI: */ 221 } while (time_after_eq(ia64_get_itc(), new_itm)); 222 return IRQ_HANDLED; 223 } 224 225 /* 226 * Encapsulate access to the itm structure for SMP. 227 */ 228 void 229 ia64_cpu_local_tick (void) 230 { 231 int cpu = smp_processor_id(); 232 unsigned long shift = 0, delta; 233 234 /* arrange for the cycle counter to generate a timer interrupt: */ 235 ia64_set_itv(IA64_TIMER_VECTOR); 236 237 delta = local_cpu_data->itm_delta; 238 /* 239 * Stagger the timer tick for each CPU so they don't occur all at (almost) the 240 * same time: 241 */ 242 if (cpu) { 243 unsigned long hi = 1UL << ia64_fls(cpu); 244 shift = (2*(cpu - hi) + 1) * delta/hi/2; 245 } 246 local_cpu_data->itm_next = ia64_get_itc() + delta + shift; 247 ia64_set_itm(local_cpu_data->itm_next); 248 } 249 250 static int nojitter; 251 252 static int __init nojitter_setup(char *str) 253 { 254 nojitter = 1; 255 printk("Jitter checking for ITC timers disabled\n"); 256 return 1; 257 } 258 259 __setup("nojitter", nojitter_setup); 260 261 262 void __devinit 263 ia64_init_itm (void) 264 { 265 unsigned long platform_base_freq, itc_freq; 266 struct pal_freq_ratio itc_ratio, proc_ratio; 267 long status, platform_base_drift, itc_drift; 268 269 /* 270 * According to SAL v2.6, we need to use a SAL call to determine the platform base 271 * frequency and then a PAL call to determine the frequency ratio between the ITC 272 * and the base frequency. 273 */ 274 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, 275 &platform_base_freq, &platform_base_drift); 276 if (status != 0) { 277 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status)); 278 } else { 279 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio); 280 if (status != 0) 281 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status); 282 } 283 if (status != 0) { 284 /* invent "random" values */ 285 printk(KERN_ERR 286 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n"); 287 platform_base_freq = 100000000; 288 platform_base_drift = -1; /* no drift info */ 289 itc_ratio.num = 3; 290 itc_ratio.den = 1; 291 } 292 if (platform_base_freq < 40000000) { 293 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n", 294 platform_base_freq); 295 platform_base_freq = 75000000; 296 platform_base_drift = -1; 297 } 298 if (!proc_ratio.den) 299 proc_ratio.den = 1; /* avoid division by zero */ 300 if (!itc_ratio.den) 301 itc_ratio.den = 1; /* avoid division by zero */ 302 303 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den; 304 305 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ; 306 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, " 307 "ITC freq=%lu.%03luMHz", smp_processor_id(), 308 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000, 309 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000); 310 311 if (platform_base_drift != -1) { 312 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den; 313 printk("+/-%ldppm\n", itc_drift); 314 } else { 315 itc_drift = -1; 316 printk("\n"); 317 } 318 319 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den; 320 local_cpu_data->itc_freq = itc_freq; 321 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC; 322 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT) 323 + itc_freq/2)/itc_freq; 324 325 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { 326 #ifdef CONFIG_SMP 327 /* On IA64 in an SMP configuration ITCs are never accurately synchronized. 328 * Jitter compensation requires a cmpxchg which may limit 329 * the scalability of the syscalls for retrieving time. 330 * The ITC synchronization is usually successful to within a few 331 * ITC ticks but this is not a sure thing. If you need to improve 332 * timer performance in SMP situations then boot the kernel with the 333 * "nojitter" option. However, doing so may result in time fluctuating (maybe 334 * even going backward) if the ITC offsets between the individual CPUs 335 * are too large. 336 */ 337 if (!nojitter) 338 itc_jitter_data.itc_jitter = 1; 339 #endif 340 } else 341 /* 342 * ITC is drifty and we have not synchronized the ITCs in smpboot.c. 343 * ITC values may fluctuate significantly between processors. 344 * Clock should not be used for hrtimers. Mark itc as only 345 * useful for boot and testing. 346 * 347 * Note that jitter compensation is off! There is no point of 348 * synchronizing ITCs since they may be large differentials 349 * that change over time. 350 * 351 * The only way to fix this would be to repeatedly sync the 352 * ITCs. Until that time we have to avoid ITC. 353 */ 354 clocksource_itc.rating = 50; 355 356 paravirt_init_missing_ticks_accounting(smp_processor_id()); 357 358 /* avoid softlock up message when cpu is unplug and plugged again. */ 359 touch_softlockup_watchdog(); 360 361 /* Setup the CPU local timer tick */ 362 ia64_cpu_local_tick(); 363 364 if (!itc_clocksource) { 365 /* Sort out mult/shift values: */ 366 clocksource_itc.mult = 367 clocksource_hz2mult(local_cpu_data->itc_freq, 368 clocksource_itc.shift); 369 clocksource_register(&clocksource_itc); 370 itc_clocksource = &clocksource_itc; 371 } 372 } 373 374 static cycle_t itc_get_cycles(void) 375 { 376 u64 lcycle, now, ret; 377 378 if (!itc_jitter_data.itc_jitter) 379 return get_cycles(); 380 381 lcycle = itc_jitter_data.itc_lastcycle; 382 now = get_cycles(); 383 if (lcycle && time_after(lcycle, now)) 384 return lcycle; 385 386 /* 387 * Keep track of the last timer value returned. 388 * In an SMP environment, you could lose out in contention of 389 * cmpxchg. If so, your cmpxchg returns new value which the 390 * winner of contention updated to. Use the new value instead. 391 */ 392 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now); 393 if (unlikely(ret != lcycle)) 394 return ret; 395 396 return now; 397 } 398 399 400 static struct irqaction timer_irqaction = { 401 .handler = timer_interrupt, 402 .flags = IRQF_DISABLED | IRQF_IRQPOLL, 403 .name = "timer" 404 }; 405 406 void __init 407 time_init (void) 408 { 409 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction); 410 efi_gettimeofday(&xtime); 411 ia64_init_itm(); 412 413 /* 414 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the 415 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC). 416 */ 417 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); 418 } 419 420 /* 421 * Generic udelay assumes that if preemption is allowed and the thread 422 * migrates to another CPU, that the ITC values are synchronized across 423 * all CPUs. 424 */ 425 static void 426 ia64_itc_udelay (unsigned long usecs) 427 { 428 unsigned long start = ia64_get_itc(); 429 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec; 430 431 while (time_before(ia64_get_itc(), end)) 432 cpu_relax(); 433 } 434 435 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay; 436 437 void 438 udelay (unsigned long usecs) 439 { 440 (*ia64_udelay)(usecs); 441 } 442 EXPORT_SYMBOL(udelay); 443 444 /* IA64 doesn't cache the timezone */ 445 void update_vsyscall_tz(void) 446 { 447 } 448 449 void update_vsyscall(struct timespec *wall, struct clocksource *c) 450 { 451 unsigned long flags; 452 453 write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags); 454 455 /* copy fsyscall clock data */ 456 fsyscall_gtod_data.clk_mask = c->mask; 457 fsyscall_gtod_data.clk_mult = c->mult; 458 fsyscall_gtod_data.clk_shift = c->shift; 459 fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio; 460 fsyscall_gtod_data.clk_cycle_last = c->cycle_last; 461 462 /* copy kernel time structures */ 463 fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec; 464 fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec; 465 fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec 466 + wall->tv_sec; 467 fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec 468 + wall->tv_nsec; 469 470 /* normalize */ 471 while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) { 472 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC; 473 fsyscall_gtod_data.monotonic_time.tv_sec++; 474 } 475 476 write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags); 477 } 478 479