xref: /openbmc/linux/arch/ia64/kernel/time.c (revision 93dc544c)
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/paravirt.h>
28 #include <asm/ptrace.h>
29 #include <asm/sal.h>
30 #include <asm/sections.h>
31 #include <asm/system.h>
32 
33 #include "fsyscall_gtod_data.h"
34 
35 static cycle_t itc_get_cycles(void);
36 
37 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
38 	.lock = SEQLOCK_UNLOCKED,
39 };
40 
41 struct itc_jitter_data_t itc_jitter_data;
42 
43 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
44 
45 #ifdef CONFIG_IA64_DEBUG_IRQ
46 
47 unsigned long last_cli_ip;
48 EXPORT_SYMBOL(last_cli_ip);
49 
50 #endif
51 
52 #ifdef CONFIG_PARAVIRT
53 static void
54 paravirt_clocksource_resume(void)
55 {
56 	if (pv_time_ops.clocksource_resume)
57 		pv_time_ops.clocksource_resume();
58 }
59 #endif
60 
61 static struct clocksource clocksource_itc = {
62 	.name           = "itc",
63 	.rating         = 350,
64 	.read           = itc_get_cycles,
65 	.mask           = CLOCKSOURCE_MASK(64),
66 	.mult           = 0, /*to be calculated*/
67 	.shift          = 16,
68 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
69 #ifdef CONFIG_PARAVIRT
70 	.resume		= paravirt_clocksource_resume,
71 #endif
72 };
73 static struct clocksource *itc_clocksource;
74 
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
76 
77 #include <linux/kernel_stat.h>
78 
79 extern cputime_t cycle_to_cputime(u64 cyc);
80 
81 /*
82  * Called from the context switch with interrupts disabled, to charge all
83  * accumulated times to the current process, and to prepare accounting on
84  * the next process.
85  */
86 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
87 {
88 	struct thread_info *pi = task_thread_info(prev);
89 	struct thread_info *ni = task_thread_info(next);
90 	cputime_t delta_stime, delta_utime;
91 	__u64 now;
92 
93 	now = ia64_get_itc();
94 
95 	delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
96 	account_system_time(prev, 0, delta_stime);
97 	account_system_time_scaled(prev, delta_stime);
98 
99 	if (pi->ac_utime) {
100 		delta_utime = cycle_to_cputime(pi->ac_utime);
101 		account_user_time(prev, delta_utime);
102 		account_user_time_scaled(prev, delta_utime);
103 	}
104 
105 	pi->ac_stamp = ni->ac_stamp = now;
106 	ni->ac_stime = ni->ac_utime = 0;
107 }
108 
109 /*
110  * Account time for a transition between system, hard irq or soft irq state.
111  * Note that this function is called with interrupts enabled.
112  */
113 void account_system_vtime(struct task_struct *tsk)
114 {
115 	struct thread_info *ti = task_thread_info(tsk);
116 	unsigned long flags;
117 	cputime_t delta_stime;
118 	__u64 now;
119 
120 	local_irq_save(flags);
121 
122 	now = ia64_get_itc();
123 
124 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
125 	account_system_time(tsk, 0, delta_stime);
126 	account_system_time_scaled(tsk, delta_stime);
127 	ti->ac_stime = 0;
128 
129 	ti->ac_stamp = now;
130 
131 	local_irq_restore(flags);
132 }
133 EXPORT_SYMBOL_GPL(account_system_vtime);
134 
135 /*
136  * Called from the timer interrupt handler to charge accumulated user time
137  * to the current process.  Must be called with interrupts disabled.
138  */
139 void account_process_tick(struct task_struct *p, int user_tick)
140 {
141 	struct thread_info *ti = task_thread_info(p);
142 	cputime_t delta_utime;
143 
144 	if (ti->ac_utime) {
145 		delta_utime = cycle_to_cputime(ti->ac_utime);
146 		account_user_time(p, delta_utime);
147 		account_user_time_scaled(p, delta_utime);
148 		ti->ac_utime = 0;
149 	}
150 }
151 
152 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
153 
154 static irqreturn_t
155 timer_interrupt (int irq, void *dev_id)
156 {
157 	unsigned long new_itm;
158 
159 	if (unlikely(cpu_is_offline(smp_processor_id()))) {
160 		return IRQ_HANDLED;
161 	}
162 
163 	platform_timer_interrupt(irq, dev_id);
164 
165 	new_itm = local_cpu_data->itm_next;
166 
167 	if (!time_after(ia64_get_itc(), new_itm))
168 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
169 		       ia64_get_itc(), new_itm);
170 
171 	profile_tick(CPU_PROFILING);
172 
173 	if (paravirt_do_steal_accounting(&new_itm))
174 		goto skip_process_time_accounting;
175 
176 	while (1) {
177 		update_process_times(user_mode(get_irq_regs()));
178 
179 		new_itm += local_cpu_data->itm_delta;
180 
181 		if (smp_processor_id() == time_keeper_id) {
182 			/*
183 			 * Here we are in the timer irq handler. We have irqs locally
184 			 * disabled, but we don't know if the timer_bh is running on
185 			 * another CPU. We need to avoid to SMP race by acquiring the
186 			 * xtime_lock.
187 			 */
188 			write_seqlock(&xtime_lock);
189 			do_timer(1);
190 			local_cpu_data->itm_next = new_itm;
191 			write_sequnlock(&xtime_lock);
192 		} else
193 			local_cpu_data->itm_next = new_itm;
194 
195 		if (time_after(new_itm, ia64_get_itc()))
196 			break;
197 
198 		/*
199 		 * Allow IPIs to interrupt the timer loop.
200 		 */
201 		local_irq_enable();
202 		local_irq_disable();
203 	}
204 
205 skip_process_time_accounting:
206 
207 	do {
208 		/*
209 		 * If we're too close to the next clock tick for
210 		 * comfort, we increase the safety margin by
211 		 * intentionally dropping the next tick(s).  We do NOT
212 		 * update itm.next because that would force us to call
213 		 * do_timer() which in turn would let our clock run
214 		 * too fast (with the potentially devastating effect
215 		 * of losing monotony of time).
216 		 */
217 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
218 			new_itm += local_cpu_data->itm_delta;
219 		ia64_set_itm(new_itm);
220 		/* double check, in case we got hit by a (slow) PMI: */
221 	} while (time_after_eq(ia64_get_itc(), new_itm));
222 	return IRQ_HANDLED;
223 }
224 
225 /*
226  * Encapsulate access to the itm structure for SMP.
227  */
228 void
229 ia64_cpu_local_tick (void)
230 {
231 	int cpu = smp_processor_id();
232 	unsigned long shift = 0, delta;
233 
234 	/* arrange for the cycle counter to generate a timer interrupt: */
235 	ia64_set_itv(IA64_TIMER_VECTOR);
236 
237 	delta = local_cpu_data->itm_delta;
238 	/*
239 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
240 	 * same time:
241 	 */
242 	if (cpu) {
243 		unsigned long hi = 1UL << ia64_fls(cpu);
244 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
245 	}
246 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
247 	ia64_set_itm(local_cpu_data->itm_next);
248 }
249 
250 static int nojitter;
251 
252 static int __init nojitter_setup(char *str)
253 {
254 	nojitter = 1;
255 	printk("Jitter checking for ITC timers disabled\n");
256 	return 1;
257 }
258 
259 __setup("nojitter", nojitter_setup);
260 
261 
262 void __devinit
263 ia64_init_itm (void)
264 {
265 	unsigned long platform_base_freq, itc_freq;
266 	struct pal_freq_ratio itc_ratio, proc_ratio;
267 	long status, platform_base_drift, itc_drift;
268 
269 	/*
270 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
271 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
272 	 * and the base frequency.
273 	 */
274 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
275 				    &platform_base_freq, &platform_base_drift);
276 	if (status != 0) {
277 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
278 	} else {
279 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
280 		if (status != 0)
281 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
282 	}
283 	if (status != 0) {
284 		/* invent "random" values */
285 		printk(KERN_ERR
286 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
287 		platform_base_freq = 100000000;
288 		platform_base_drift = -1;	/* no drift info */
289 		itc_ratio.num = 3;
290 		itc_ratio.den = 1;
291 	}
292 	if (platform_base_freq < 40000000) {
293 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
294 		       platform_base_freq);
295 		platform_base_freq = 75000000;
296 		platform_base_drift = -1;
297 	}
298 	if (!proc_ratio.den)
299 		proc_ratio.den = 1;	/* avoid division by zero */
300 	if (!itc_ratio.den)
301 		itc_ratio.den = 1;	/* avoid division by zero */
302 
303 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
304 
305 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
306 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
307 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
308 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
309 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
310 
311 	if (platform_base_drift != -1) {
312 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
313 		printk("+/-%ldppm\n", itc_drift);
314 	} else {
315 		itc_drift = -1;
316 		printk("\n");
317 	}
318 
319 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
320 	local_cpu_data->itc_freq = itc_freq;
321 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
322 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
323 					+ itc_freq/2)/itc_freq;
324 
325 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
326 #ifdef CONFIG_SMP
327 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
328 		 * Jitter compensation requires a cmpxchg which may limit
329 		 * the scalability of the syscalls for retrieving time.
330 		 * The ITC synchronization is usually successful to within a few
331 		 * ITC ticks but this is not a sure thing. If you need to improve
332 		 * timer performance in SMP situations then boot the kernel with the
333 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
334 		 * even going backward) if the ITC offsets between the individual CPUs
335 		 * are too large.
336 		 */
337 		if (!nojitter)
338 			itc_jitter_data.itc_jitter = 1;
339 #endif
340 	} else
341 		/*
342 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
343 		 * ITC values may fluctuate significantly between processors.
344 		 * Clock should not be used for hrtimers. Mark itc as only
345 		 * useful for boot and testing.
346 		 *
347 		 * Note that jitter compensation is off! There is no point of
348 		 * synchronizing ITCs since they may be large differentials
349 		 * that change over time.
350 		 *
351 		 * The only way to fix this would be to repeatedly sync the
352 		 * ITCs. Until that time we have to avoid ITC.
353 		 */
354 		clocksource_itc.rating = 50;
355 
356 	paravirt_init_missing_ticks_accounting(smp_processor_id());
357 
358 	/* avoid softlock up message when cpu is unplug and plugged again. */
359 	touch_softlockup_watchdog();
360 
361 	/* Setup the CPU local timer tick */
362 	ia64_cpu_local_tick();
363 
364 	if (!itc_clocksource) {
365 		/* Sort out mult/shift values: */
366 		clocksource_itc.mult =
367 			clocksource_hz2mult(local_cpu_data->itc_freq,
368 						clocksource_itc.shift);
369 		clocksource_register(&clocksource_itc);
370 		itc_clocksource = &clocksource_itc;
371 	}
372 }
373 
374 static cycle_t itc_get_cycles(void)
375 {
376 	u64 lcycle, now, ret;
377 
378 	if (!itc_jitter_data.itc_jitter)
379 		return get_cycles();
380 
381 	lcycle = itc_jitter_data.itc_lastcycle;
382 	now = get_cycles();
383 	if (lcycle && time_after(lcycle, now))
384 		return lcycle;
385 
386 	/*
387 	 * Keep track of the last timer value returned.
388 	 * In an SMP environment, you could lose out in contention of
389 	 * cmpxchg. If so, your cmpxchg returns new value which the
390 	 * winner of contention updated to. Use the new value instead.
391 	 */
392 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
393 	if (unlikely(ret != lcycle))
394 		return ret;
395 
396 	return now;
397 }
398 
399 
400 static struct irqaction timer_irqaction = {
401 	.handler =	timer_interrupt,
402 	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
403 	.name =		"timer"
404 };
405 
406 void __init
407 time_init (void)
408 {
409 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
410 	efi_gettimeofday(&xtime);
411 	ia64_init_itm();
412 
413 	/*
414 	 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
415 	 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
416 	 */
417 	set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
418 }
419 
420 /*
421  * Generic udelay assumes that if preemption is allowed and the thread
422  * migrates to another CPU, that the ITC values are synchronized across
423  * all CPUs.
424  */
425 static void
426 ia64_itc_udelay (unsigned long usecs)
427 {
428 	unsigned long start = ia64_get_itc();
429 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
430 
431 	while (time_before(ia64_get_itc(), end))
432 		cpu_relax();
433 }
434 
435 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
436 
437 void
438 udelay (unsigned long usecs)
439 {
440 	(*ia64_udelay)(usecs);
441 }
442 EXPORT_SYMBOL(udelay);
443 
444 /* IA64 doesn't cache the timezone */
445 void update_vsyscall_tz(void)
446 {
447 }
448 
449 void update_vsyscall(struct timespec *wall, struct clocksource *c)
450 {
451         unsigned long flags;
452 
453         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
454 
455         /* copy fsyscall clock data */
456         fsyscall_gtod_data.clk_mask = c->mask;
457         fsyscall_gtod_data.clk_mult = c->mult;
458         fsyscall_gtod_data.clk_shift = c->shift;
459         fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
460         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
461 
462 	/* copy kernel time structures */
463         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
464         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
465         fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
466 							+ wall->tv_sec;
467         fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
468 							+ wall->tv_nsec;
469 
470 	/* normalize */
471 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
472 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
473 		fsyscall_gtod_data.monotonic_time.tv_sec++;
474 	}
475 
476         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
477 }
478 
479