xref: /openbmc/linux/arch/ia64/kernel/time.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/ia64/kernel/time.c
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  *	David Mosberger <davidm@hpl.hp.com>
8  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
9  * Copyright (C) 1999-2000 VA Linux Systems
10  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
11  */
12 
13 #include <linux/cpu.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/nmi.h>
21 #include <linux/interrupt.h>
22 #include <linux/efi.h>
23 #include <linux/timex.h>
24 #include <linux/timekeeper_internal.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched/cputime.h>
27 
28 #include <asm/delay.h>
29 #include <asm/hw_irq.h>
30 #include <asm/ptrace.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 
34 #include "fsyscall_gtod_data.h"
35 #include "irq.h"
36 
37 static u64 itc_get_cycles(struct clocksource *cs);
38 
39 struct fsyscall_gtod_data_t fsyscall_gtod_data;
40 
41 struct itc_jitter_data_t itc_jitter_data;
42 
43 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
44 
45 #ifdef CONFIG_IA64_DEBUG_IRQ
46 
47 unsigned long last_cli_ip;
48 EXPORT_SYMBOL(last_cli_ip);
49 
50 #endif
51 
52 static struct clocksource clocksource_itc = {
53 	.name           = "itc",
54 	.rating         = 350,
55 	.read           = itc_get_cycles,
56 	.mask           = CLOCKSOURCE_MASK(64),
57 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
58 };
59 static struct clocksource *itc_clocksource;
60 
61 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
62 
63 #include <linux/kernel_stat.h>
64 
65 extern u64 cycle_to_nsec(u64 cyc);
66 
67 void vtime_flush(struct task_struct *tsk)
68 {
69 	struct thread_info *ti = task_thread_info(tsk);
70 	u64 delta;
71 
72 	if (ti->utime)
73 		account_user_time(tsk, cycle_to_nsec(ti->utime));
74 
75 	if (ti->gtime)
76 		account_guest_time(tsk, cycle_to_nsec(ti->gtime));
77 
78 	if (ti->idle_time)
79 		account_idle_time(cycle_to_nsec(ti->idle_time));
80 
81 	if (ti->stime) {
82 		delta = cycle_to_nsec(ti->stime);
83 		account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
84 	}
85 
86 	if (ti->hardirq_time) {
87 		delta = cycle_to_nsec(ti->hardirq_time);
88 		account_system_index_time(tsk, delta, CPUTIME_IRQ);
89 	}
90 
91 	if (ti->softirq_time) {
92 		delta = cycle_to_nsec(ti->softirq_time);
93 		account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
94 	}
95 
96 	ti->utime = 0;
97 	ti->gtime = 0;
98 	ti->idle_time = 0;
99 	ti->stime = 0;
100 	ti->hardirq_time = 0;
101 	ti->softirq_time = 0;
102 }
103 
104 /*
105  * Called from the context switch with interrupts disabled, to charge all
106  * accumulated times to the current process, and to prepare accounting on
107  * the next process.
108  */
109 void arch_vtime_task_switch(struct task_struct *prev)
110 {
111 	struct thread_info *pi = task_thread_info(prev);
112 	struct thread_info *ni = task_thread_info(current);
113 
114 	ni->ac_stamp = pi->ac_stamp;
115 	ni->ac_stime = ni->ac_utime = 0;
116 }
117 
118 /*
119  * Account time for a transition between system, hard irq or soft irq state.
120  * Note that this function is called with interrupts enabled.
121  */
122 static __u64 vtime_delta(struct task_struct *tsk)
123 {
124 	struct thread_info *ti = task_thread_info(tsk);
125 	__u64 now, delta_stime;
126 
127 	WARN_ON_ONCE(!irqs_disabled());
128 
129 	now = ia64_get_itc();
130 	delta_stime = now - ti->ac_stamp;
131 	ti->ac_stamp = now;
132 
133 	return delta_stime;
134 }
135 
136 void vtime_account_kernel(struct task_struct *tsk)
137 {
138 	struct thread_info *ti = task_thread_info(tsk);
139 	__u64 stime = vtime_delta(tsk);
140 
141 	if ((tsk->flags & PF_VCPU) && !irq_count())
142 		ti->gtime += stime;
143 	else if (hardirq_count())
144 		ti->hardirq_time += stime;
145 	else if (in_serving_softirq())
146 		ti->softirq_time += stime;
147 	else
148 		ti->stime += stime;
149 }
150 EXPORT_SYMBOL_GPL(vtime_account_kernel);
151 
152 void vtime_account_idle(struct task_struct *tsk)
153 {
154 	struct thread_info *ti = task_thread_info(tsk);
155 
156 	ti->idle_time += vtime_delta(tsk);
157 }
158 
159 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
160 
161 static irqreturn_t
162 timer_interrupt (int irq, void *dev_id)
163 {
164 	unsigned long new_itm;
165 
166 	if (cpu_is_offline(smp_processor_id())) {
167 		return IRQ_HANDLED;
168 	}
169 
170 	new_itm = local_cpu_data->itm_next;
171 
172 	if (!time_after(ia64_get_itc(), new_itm))
173 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
174 		       ia64_get_itc(), new_itm);
175 
176 	profile_tick(CPU_PROFILING);
177 
178 	while (1) {
179 		update_process_times(user_mode(get_irq_regs()));
180 
181 		new_itm += local_cpu_data->itm_delta;
182 
183 		if (smp_processor_id() == time_keeper_id)
184 			xtime_update(1);
185 
186 		local_cpu_data->itm_next = new_itm;
187 
188 		if (time_after(new_itm, ia64_get_itc()))
189 			break;
190 
191 		/*
192 		 * Allow IPIs to interrupt the timer loop.
193 		 */
194 		local_irq_enable();
195 		local_irq_disable();
196 	}
197 
198 	do {
199 		/*
200 		 * If we're too close to the next clock tick for
201 		 * comfort, we increase the safety margin by
202 		 * intentionally dropping the next tick(s).  We do NOT
203 		 * update itm.next because that would force us to call
204 		 * xtime_update() which in turn would let our clock run
205 		 * too fast (with the potentially devastating effect
206 		 * of losing monotony of time).
207 		 */
208 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
209 			new_itm += local_cpu_data->itm_delta;
210 		ia64_set_itm(new_itm);
211 		/* double check, in case we got hit by a (slow) PMI: */
212 	} while (time_after_eq(ia64_get_itc(), new_itm));
213 	return IRQ_HANDLED;
214 }
215 
216 /*
217  * Encapsulate access to the itm structure for SMP.
218  */
219 void
220 ia64_cpu_local_tick (void)
221 {
222 	int cpu = smp_processor_id();
223 	unsigned long shift = 0, delta;
224 
225 	/* arrange for the cycle counter to generate a timer interrupt: */
226 	ia64_set_itv(IA64_TIMER_VECTOR);
227 
228 	delta = local_cpu_data->itm_delta;
229 	/*
230 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
231 	 * same time:
232 	 */
233 	if (cpu) {
234 		unsigned long hi = 1UL << ia64_fls(cpu);
235 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
236 	}
237 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
238 	ia64_set_itm(local_cpu_data->itm_next);
239 }
240 
241 static int nojitter;
242 
243 static int __init nojitter_setup(char *str)
244 {
245 	nojitter = 1;
246 	printk("Jitter checking for ITC timers disabled\n");
247 	return 1;
248 }
249 
250 __setup("nojitter", nojitter_setup);
251 
252 
253 void ia64_init_itm(void)
254 {
255 	unsigned long platform_base_freq, itc_freq;
256 	struct pal_freq_ratio itc_ratio, proc_ratio;
257 	long status, platform_base_drift, itc_drift;
258 
259 	/*
260 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
261 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
262 	 * and the base frequency.
263 	 */
264 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
265 				    &platform_base_freq, &platform_base_drift);
266 	if (status != 0) {
267 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
268 	} else {
269 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
270 		if (status != 0)
271 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
272 	}
273 	if (status != 0) {
274 		/* invent "random" values */
275 		printk(KERN_ERR
276 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
277 		platform_base_freq = 100000000;
278 		platform_base_drift = -1;	/* no drift info */
279 		itc_ratio.num = 3;
280 		itc_ratio.den = 1;
281 	}
282 	if (platform_base_freq < 40000000) {
283 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
284 		       platform_base_freq);
285 		platform_base_freq = 75000000;
286 		platform_base_drift = -1;
287 	}
288 	if (!proc_ratio.den)
289 		proc_ratio.den = 1;	/* avoid division by zero */
290 	if (!itc_ratio.den)
291 		itc_ratio.den = 1;	/* avoid division by zero */
292 
293 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
294 
295 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
296 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
297 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
298 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
299 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
300 
301 	if (platform_base_drift != -1) {
302 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
303 		printk("+/-%ldppm\n", itc_drift);
304 	} else {
305 		itc_drift = -1;
306 		printk("\n");
307 	}
308 
309 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
310 	local_cpu_data->itc_freq = itc_freq;
311 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
312 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
313 					+ itc_freq/2)/itc_freq;
314 
315 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
316 #ifdef CONFIG_SMP
317 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
318 		 * Jitter compensation requires a cmpxchg which may limit
319 		 * the scalability of the syscalls for retrieving time.
320 		 * The ITC synchronization is usually successful to within a few
321 		 * ITC ticks but this is not a sure thing. If you need to improve
322 		 * timer performance in SMP situations then boot the kernel with the
323 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
324 		 * even going backward) if the ITC offsets between the individual CPUs
325 		 * are too large.
326 		 */
327 		if (!nojitter)
328 			itc_jitter_data.itc_jitter = 1;
329 #endif
330 	} else
331 		/*
332 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
333 		 * ITC values may fluctuate significantly between processors.
334 		 * Clock should not be used for hrtimers. Mark itc as only
335 		 * useful for boot and testing.
336 		 *
337 		 * Note that jitter compensation is off! There is no point of
338 		 * synchronizing ITCs since they may be large differentials
339 		 * that change over time.
340 		 *
341 		 * The only way to fix this would be to repeatedly sync the
342 		 * ITCs. Until that time we have to avoid ITC.
343 		 */
344 		clocksource_itc.rating = 50;
345 
346 	/* avoid softlock up message when cpu is unplug and plugged again. */
347 	touch_softlockup_watchdog();
348 
349 	/* Setup the CPU local timer tick */
350 	ia64_cpu_local_tick();
351 
352 	if (!itc_clocksource) {
353 		clocksource_register_hz(&clocksource_itc,
354 						local_cpu_data->itc_freq);
355 		itc_clocksource = &clocksource_itc;
356 	}
357 }
358 
359 static u64 itc_get_cycles(struct clocksource *cs)
360 {
361 	unsigned long lcycle, now, ret;
362 
363 	if (!itc_jitter_data.itc_jitter)
364 		return get_cycles();
365 
366 	lcycle = itc_jitter_data.itc_lastcycle;
367 	now = get_cycles();
368 	if (lcycle && time_after(lcycle, now))
369 		return lcycle;
370 
371 	/*
372 	 * Keep track of the last timer value returned.
373 	 * In an SMP environment, you could lose out in contention of
374 	 * cmpxchg. If so, your cmpxchg returns new value which the
375 	 * winner of contention updated to. Use the new value instead.
376 	 */
377 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
378 	if (unlikely(ret != lcycle))
379 		return ret;
380 
381 	return now;
382 }
383 
384 void read_persistent_clock64(struct timespec64 *ts)
385 {
386 	efi_gettimeofday(ts);
387 }
388 
389 void __init
390 time_init (void)
391 {
392 	register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
393 			    "timer");
394 	ia64_init_itm();
395 }
396 
397 /*
398  * Generic udelay assumes that if preemption is allowed and the thread
399  * migrates to another CPU, that the ITC values are synchronized across
400  * all CPUs.
401  */
402 static void
403 ia64_itc_udelay (unsigned long usecs)
404 {
405 	unsigned long start = ia64_get_itc();
406 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
407 
408 	while (time_before(ia64_get_itc(), end))
409 		cpu_relax();
410 }
411 
412 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
413 
414 void
415 udelay (unsigned long usecs)
416 {
417 	(*ia64_udelay)(usecs);
418 }
419 EXPORT_SYMBOL(udelay);
420 
421 /* IA64 doesn't cache the timezone */
422 void update_vsyscall_tz(void)
423 {
424 }
425 
426 void update_vsyscall(struct timekeeper *tk)
427 {
428 	write_seqcount_begin(&fsyscall_gtod_data.seq);
429 
430 	/* copy vsyscall data */
431 	fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
432 	fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
433 	fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
434 	fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
435 	fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
436 
437 	fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
438 	fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
439 
440 	fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
441 					      + tk->wall_to_monotonic.tv_sec;
442 	fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
443 						+ ((u64)tk->wall_to_monotonic.tv_nsec
444 							<< tk->tkr_mono.shift);
445 
446 	/* normalize */
447 	while (fsyscall_gtod_data.monotonic_time.snsec >=
448 					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
449 		fsyscall_gtod_data.monotonic_time.snsec -=
450 					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
451 		fsyscall_gtod_data.monotonic_time.sec++;
452 	}
453 
454 	write_seqcount_end(&fsyscall_gtod_data.seq);
455 }
456 
457