xref: /openbmc/linux/arch/ia64/kernel/time.c (revision 565d76cb)
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 #include <asm/system.h>
33 
34 #include "fsyscall_gtod_data.h"
35 
36 static cycle_t itc_get_cycles(struct clocksource *cs);
37 
38 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
39 	.lock = SEQLOCK_UNLOCKED,
40 };
41 
42 struct itc_jitter_data_t itc_jitter_data;
43 
44 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45 
46 #ifdef CONFIG_IA64_DEBUG_IRQ
47 
48 unsigned long last_cli_ip;
49 EXPORT_SYMBOL(last_cli_ip);
50 
51 #endif
52 
53 #ifdef CONFIG_PARAVIRT
54 /* We need to define a real function for sched_clock, to override the
55    weak default version */
56 unsigned long long sched_clock(void)
57 {
58         return paravirt_sched_clock();
59 }
60 #endif
61 
62 #ifdef CONFIG_PARAVIRT
63 static void
64 paravirt_clocksource_resume(struct clocksource *cs)
65 {
66 	if (pv_time_ops.clocksource_resume)
67 		pv_time_ops.clocksource_resume();
68 }
69 #endif
70 
71 static struct clocksource clocksource_itc = {
72 	.name           = "itc",
73 	.rating         = 350,
74 	.read           = itc_get_cycles,
75 	.mask           = CLOCKSOURCE_MASK(64),
76 	.mult           = 0, /*to be calculated*/
77 	.shift          = 16,
78 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
79 #ifdef CONFIG_PARAVIRT
80 	.resume		= paravirt_clocksource_resume,
81 #endif
82 };
83 static struct clocksource *itc_clocksource;
84 
85 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
86 
87 #include <linux/kernel_stat.h>
88 
89 extern cputime_t cycle_to_cputime(u64 cyc);
90 
91 /*
92  * Called from the context switch with interrupts disabled, to charge all
93  * accumulated times to the current process, and to prepare accounting on
94  * the next process.
95  */
96 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
97 {
98 	struct thread_info *pi = task_thread_info(prev);
99 	struct thread_info *ni = task_thread_info(next);
100 	cputime_t delta_stime, delta_utime;
101 	__u64 now;
102 
103 	now = ia64_get_itc();
104 
105 	delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
106 	if (idle_task(smp_processor_id()) != prev)
107 		account_system_time(prev, 0, delta_stime, delta_stime);
108 	else
109 		account_idle_time(delta_stime);
110 
111 	if (pi->ac_utime) {
112 		delta_utime = cycle_to_cputime(pi->ac_utime);
113 		account_user_time(prev, delta_utime, delta_utime);
114 	}
115 
116 	pi->ac_stamp = ni->ac_stamp = now;
117 	ni->ac_stime = ni->ac_utime = 0;
118 }
119 
120 /*
121  * Account time for a transition between system, hard irq or soft irq state.
122  * Note that this function is called with interrupts enabled.
123  */
124 void account_system_vtime(struct task_struct *tsk)
125 {
126 	struct thread_info *ti = task_thread_info(tsk);
127 	unsigned long flags;
128 	cputime_t delta_stime;
129 	__u64 now;
130 
131 	local_irq_save(flags);
132 
133 	now = ia64_get_itc();
134 
135 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
136 	if (irq_count() || idle_task(smp_processor_id()) != tsk)
137 		account_system_time(tsk, 0, delta_stime, delta_stime);
138 	else
139 		account_idle_time(delta_stime);
140 	ti->ac_stime = 0;
141 
142 	ti->ac_stamp = now;
143 
144 	local_irq_restore(flags);
145 }
146 EXPORT_SYMBOL_GPL(account_system_vtime);
147 
148 /*
149  * Called from the timer interrupt handler to charge accumulated user time
150  * to the current process.  Must be called with interrupts disabled.
151  */
152 void account_process_tick(struct task_struct *p, int user_tick)
153 {
154 	struct thread_info *ti = task_thread_info(p);
155 	cputime_t delta_utime;
156 
157 	if (ti->ac_utime) {
158 		delta_utime = cycle_to_cputime(ti->ac_utime);
159 		account_user_time(p, delta_utime, delta_utime);
160 		ti->ac_utime = 0;
161 	}
162 }
163 
164 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
165 
166 static irqreturn_t
167 timer_interrupt (int irq, void *dev_id)
168 {
169 	unsigned long new_itm;
170 
171 	if (cpu_is_offline(smp_processor_id())) {
172 		return IRQ_HANDLED;
173 	}
174 
175 	platform_timer_interrupt(irq, dev_id);
176 
177 	new_itm = local_cpu_data->itm_next;
178 
179 	if (!time_after(ia64_get_itc(), new_itm))
180 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
181 		       ia64_get_itc(), new_itm);
182 
183 	profile_tick(CPU_PROFILING);
184 
185 	if (paravirt_do_steal_accounting(&new_itm))
186 		goto skip_process_time_accounting;
187 
188 	while (1) {
189 		update_process_times(user_mode(get_irq_regs()));
190 
191 		new_itm += local_cpu_data->itm_delta;
192 
193 		if (smp_processor_id() == time_keeper_id)
194 			xtime_update(1);
195 
196 		local_cpu_data->itm_next = new_itm;
197 
198 		if (time_after(new_itm, ia64_get_itc()))
199 			break;
200 
201 		/*
202 		 * Allow IPIs to interrupt the timer loop.
203 		 */
204 		local_irq_enable();
205 		local_irq_disable();
206 	}
207 
208 skip_process_time_accounting:
209 
210 	do {
211 		/*
212 		 * If we're too close to the next clock tick for
213 		 * comfort, we increase the safety margin by
214 		 * intentionally dropping the next tick(s).  We do NOT
215 		 * update itm.next because that would force us to call
216 		 * xtime_update() which in turn would let our clock run
217 		 * too fast (with the potentially devastating effect
218 		 * of losing monotony of time).
219 		 */
220 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
221 			new_itm += local_cpu_data->itm_delta;
222 		ia64_set_itm(new_itm);
223 		/* double check, in case we got hit by a (slow) PMI: */
224 	} while (time_after_eq(ia64_get_itc(), new_itm));
225 	return IRQ_HANDLED;
226 }
227 
228 /*
229  * Encapsulate access to the itm structure for SMP.
230  */
231 void
232 ia64_cpu_local_tick (void)
233 {
234 	int cpu = smp_processor_id();
235 	unsigned long shift = 0, delta;
236 
237 	/* arrange for the cycle counter to generate a timer interrupt: */
238 	ia64_set_itv(IA64_TIMER_VECTOR);
239 
240 	delta = local_cpu_data->itm_delta;
241 	/*
242 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
243 	 * same time:
244 	 */
245 	if (cpu) {
246 		unsigned long hi = 1UL << ia64_fls(cpu);
247 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
248 	}
249 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
250 	ia64_set_itm(local_cpu_data->itm_next);
251 }
252 
253 static int nojitter;
254 
255 static int __init nojitter_setup(char *str)
256 {
257 	nojitter = 1;
258 	printk("Jitter checking for ITC timers disabled\n");
259 	return 1;
260 }
261 
262 __setup("nojitter", nojitter_setup);
263 
264 
265 void __devinit
266 ia64_init_itm (void)
267 {
268 	unsigned long platform_base_freq, itc_freq;
269 	struct pal_freq_ratio itc_ratio, proc_ratio;
270 	long status, platform_base_drift, itc_drift;
271 
272 	/*
273 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
274 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
275 	 * and the base frequency.
276 	 */
277 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
278 				    &platform_base_freq, &platform_base_drift);
279 	if (status != 0) {
280 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
281 	} else {
282 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
283 		if (status != 0)
284 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
285 	}
286 	if (status != 0) {
287 		/* invent "random" values */
288 		printk(KERN_ERR
289 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
290 		platform_base_freq = 100000000;
291 		platform_base_drift = -1;	/* no drift info */
292 		itc_ratio.num = 3;
293 		itc_ratio.den = 1;
294 	}
295 	if (platform_base_freq < 40000000) {
296 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
297 		       platform_base_freq);
298 		platform_base_freq = 75000000;
299 		platform_base_drift = -1;
300 	}
301 	if (!proc_ratio.den)
302 		proc_ratio.den = 1;	/* avoid division by zero */
303 	if (!itc_ratio.den)
304 		itc_ratio.den = 1;	/* avoid division by zero */
305 
306 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
307 
308 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
309 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
310 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
311 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
312 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
313 
314 	if (platform_base_drift != -1) {
315 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
316 		printk("+/-%ldppm\n", itc_drift);
317 	} else {
318 		itc_drift = -1;
319 		printk("\n");
320 	}
321 
322 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
323 	local_cpu_data->itc_freq = itc_freq;
324 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
325 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
326 					+ itc_freq/2)/itc_freq;
327 
328 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
329 #ifdef CONFIG_SMP
330 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
331 		 * Jitter compensation requires a cmpxchg which may limit
332 		 * the scalability of the syscalls for retrieving time.
333 		 * The ITC synchronization is usually successful to within a few
334 		 * ITC ticks but this is not a sure thing. If you need to improve
335 		 * timer performance in SMP situations then boot the kernel with the
336 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
337 		 * even going backward) if the ITC offsets between the individual CPUs
338 		 * are too large.
339 		 */
340 		if (!nojitter)
341 			itc_jitter_data.itc_jitter = 1;
342 #endif
343 	} else
344 		/*
345 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
346 		 * ITC values may fluctuate significantly between processors.
347 		 * Clock should not be used for hrtimers. Mark itc as only
348 		 * useful for boot and testing.
349 		 *
350 		 * Note that jitter compensation is off! There is no point of
351 		 * synchronizing ITCs since they may be large differentials
352 		 * that change over time.
353 		 *
354 		 * The only way to fix this would be to repeatedly sync the
355 		 * ITCs. Until that time we have to avoid ITC.
356 		 */
357 		clocksource_itc.rating = 50;
358 
359 	paravirt_init_missing_ticks_accounting(smp_processor_id());
360 
361 	/* avoid softlock up message when cpu is unplug and plugged again. */
362 	touch_softlockup_watchdog();
363 
364 	/* Setup the CPU local timer tick */
365 	ia64_cpu_local_tick();
366 
367 	if (!itc_clocksource) {
368 		/* Sort out mult/shift values: */
369 		clocksource_itc.mult =
370 			clocksource_hz2mult(local_cpu_data->itc_freq,
371 						clocksource_itc.shift);
372 		clocksource_register(&clocksource_itc);
373 		itc_clocksource = &clocksource_itc;
374 	}
375 }
376 
377 static cycle_t itc_get_cycles(struct clocksource *cs)
378 {
379 	unsigned long lcycle, now, ret;
380 
381 	if (!itc_jitter_data.itc_jitter)
382 		return get_cycles();
383 
384 	lcycle = itc_jitter_data.itc_lastcycle;
385 	now = get_cycles();
386 	if (lcycle && time_after(lcycle, now))
387 		return lcycle;
388 
389 	/*
390 	 * Keep track of the last timer value returned.
391 	 * In an SMP environment, you could lose out in contention of
392 	 * cmpxchg. If so, your cmpxchg returns new value which the
393 	 * winner of contention updated to. Use the new value instead.
394 	 */
395 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
396 	if (unlikely(ret != lcycle))
397 		return ret;
398 
399 	return now;
400 }
401 
402 
403 static struct irqaction timer_irqaction = {
404 	.handler =	timer_interrupt,
405 	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
406 	.name =		"timer"
407 };
408 
409 static struct platform_device rtc_efi_dev = {
410 	.name = "rtc-efi",
411 	.id = -1,
412 };
413 
414 static int __init rtc_init(void)
415 {
416 	if (platform_device_register(&rtc_efi_dev) < 0)
417 		printk(KERN_ERR "unable to register rtc device...\n");
418 
419 	/* not necessarily an error */
420 	return 0;
421 }
422 module_init(rtc_init);
423 
424 void read_persistent_clock(struct timespec *ts)
425 {
426 	efi_gettimeofday(ts);
427 }
428 
429 void __init
430 time_init (void)
431 {
432 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
433 	ia64_init_itm();
434 }
435 
436 /*
437  * Generic udelay assumes that if preemption is allowed and the thread
438  * migrates to another CPU, that the ITC values are synchronized across
439  * all CPUs.
440  */
441 static void
442 ia64_itc_udelay (unsigned long usecs)
443 {
444 	unsigned long start = ia64_get_itc();
445 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
446 
447 	while (time_before(ia64_get_itc(), end))
448 		cpu_relax();
449 }
450 
451 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
452 
453 void
454 udelay (unsigned long usecs)
455 {
456 	(*ia64_udelay)(usecs);
457 }
458 EXPORT_SYMBOL(udelay);
459 
460 /* IA64 doesn't cache the timezone */
461 void update_vsyscall_tz(void)
462 {
463 }
464 
465 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
466 			struct clocksource *c, u32 mult)
467 {
468         unsigned long flags;
469 
470         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
471 
472         /* copy fsyscall clock data */
473         fsyscall_gtod_data.clk_mask = c->mask;
474         fsyscall_gtod_data.clk_mult = mult;
475         fsyscall_gtod_data.clk_shift = c->shift;
476         fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
477         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
478 
479 	/* copy kernel time structures */
480         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
481         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
482 	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
483 							+ wall->tv_sec;
484 	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
485 							+ wall->tv_nsec;
486 
487 	/* normalize */
488 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
489 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
490 		fsyscall_gtod_data.monotonic_time.tv_sec++;
491 	}
492 
493         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
494 }
495 
496