xref: /openbmc/linux/arch/ia64/kernel/time.c (revision 39b6f3aa)
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/timekeeper_internal.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 
33 #include "fsyscall_gtod_data.h"
34 
35 static cycle_t itc_get_cycles(struct clocksource *cs);
36 
37 struct fsyscall_gtod_data_t fsyscall_gtod_data;
38 
39 struct itc_jitter_data_t itc_jitter_data;
40 
41 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
42 
43 #ifdef CONFIG_IA64_DEBUG_IRQ
44 
45 unsigned long last_cli_ip;
46 EXPORT_SYMBOL(last_cli_ip);
47 
48 #endif
49 
50 #ifdef CONFIG_PARAVIRT
51 /* We need to define a real function for sched_clock, to override the
52    weak default version */
53 unsigned long long sched_clock(void)
54 {
55         return paravirt_sched_clock();
56 }
57 #endif
58 
59 #ifdef CONFIG_PARAVIRT
60 static void
61 paravirt_clocksource_resume(struct clocksource *cs)
62 {
63 	if (pv_time_ops.clocksource_resume)
64 		pv_time_ops.clocksource_resume();
65 }
66 #endif
67 
68 static struct clocksource clocksource_itc = {
69 	.name           = "itc",
70 	.rating         = 350,
71 	.read           = itc_get_cycles,
72 	.mask           = CLOCKSOURCE_MASK(64),
73 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
74 #ifdef CONFIG_PARAVIRT
75 	.resume		= paravirt_clocksource_resume,
76 #endif
77 };
78 static struct clocksource *itc_clocksource;
79 
80 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
81 
82 #include <linux/kernel_stat.h>
83 
84 extern cputime_t cycle_to_cputime(u64 cyc);
85 
86 void vtime_account_user(struct task_struct *tsk)
87 {
88 	cputime_t delta_utime;
89 	struct thread_info *ti = task_thread_info(tsk);
90 
91 	if (ti->ac_utime) {
92 		delta_utime = cycle_to_cputime(ti->ac_utime);
93 		account_user_time(tsk, delta_utime, delta_utime);
94 		ti->ac_utime = 0;
95 	}
96 }
97 
98 /*
99  * Called from the context switch with interrupts disabled, to charge all
100  * accumulated times to the current process, and to prepare accounting on
101  * the next process.
102  */
103 void arch_vtime_task_switch(struct task_struct *prev)
104 {
105 	struct thread_info *pi = task_thread_info(prev);
106 	struct thread_info *ni = task_thread_info(current);
107 
108 	pi->ac_stamp = ni->ac_stamp;
109 	ni->ac_stime = ni->ac_utime = 0;
110 }
111 
112 /*
113  * Account time for a transition between system, hard irq or soft irq state.
114  * Note that this function is called with interrupts enabled.
115  */
116 static cputime_t vtime_delta(struct task_struct *tsk)
117 {
118 	struct thread_info *ti = task_thread_info(tsk);
119 	cputime_t delta_stime;
120 	__u64 now;
121 
122 	WARN_ON_ONCE(!irqs_disabled());
123 
124 	now = ia64_get_itc();
125 
126 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
127 	ti->ac_stime = 0;
128 	ti->ac_stamp = now;
129 
130 	return delta_stime;
131 }
132 
133 void vtime_account_system(struct task_struct *tsk)
134 {
135 	cputime_t delta = vtime_delta(tsk);
136 
137 	account_system_time(tsk, 0, delta, delta);
138 }
139 EXPORT_SYMBOL_GPL(vtime_account_system);
140 
141 void vtime_account_idle(struct task_struct *tsk)
142 {
143 	account_idle_time(vtime_delta(tsk));
144 }
145 
146 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
147 
148 static irqreturn_t
149 timer_interrupt (int irq, void *dev_id)
150 {
151 	unsigned long new_itm;
152 
153 	if (cpu_is_offline(smp_processor_id())) {
154 		return IRQ_HANDLED;
155 	}
156 
157 	platform_timer_interrupt(irq, dev_id);
158 
159 	new_itm = local_cpu_data->itm_next;
160 
161 	if (!time_after(ia64_get_itc(), new_itm))
162 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
163 		       ia64_get_itc(), new_itm);
164 
165 	profile_tick(CPU_PROFILING);
166 
167 	if (paravirt_do_steal_accounting(&new_itm))
168 		goto skip_process_time_accounting;
169 
170 	while (1) {
171 		update_process_times(user_mode(get_irq_regs()));
172 
173 		new_itm += local_cpu_data->itm_delta;
174 
175 		if (smp_processor_id() == time_keeper_id)
176 			xtime_update(1);
177 
178 		local_cpu_data->itm_next = new_itm;
179 
180 		if (time_after(new_itm, ia64_get_itc()))
181 			break;
182 
183 		/*
184 		 * Allow IPIs to interrupt the timer loop.
185 		 */
186 		local_irq_enable();
187 		local_irq_disable();
188 	}
189 
190 skip_process_time_accounting:
191 
192 	do {
193 		/*
194 		 * If we're too close to the next clock tick for
195 		 * comfort, we increase the safety margin by
196 		 * intentionally dropping the next tick(s).  We do NOT
197 		 * update itm.next because that would force us to call
198 		 * xtime_update() which in turn would let our clock run
199 		 * too fast (with the potentially devastating effect
200 		 * of losing monotony of time).
201 		 */
202 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
203 			new_itm += local_cpu_data->itm_delta;
204 		ia64_set_itm(new_itm);
205 		/* double check, in case we got hit by a (slow) PMI: */
206 	} while (time_after_eq(ia64_get_itc(), new_itm));
207 	return IRQ_HANDLED;
208 }
209 
210 /*
211  * Encapsulate access to the itm structure for SMP.
212  */
213 void
214 ia64_cpu_local_tick (void)
215 {
216 	int cpu = smp_processor_id();
217 	unsigned long shift = 0, delta;
218 
219 	/* arrange for the cycle counter to generate a timer interrupt: */
220 	ia64_set_itv(IA64_TIMER_VECTOR);
221 
222 	delta = local_cpu_data->itm_delta;
223 	/*
224 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
225 	 * same time:
226 	 */
227 	if (cpu) {
228 		unsigned long hi = 1UL << ia64_fls(cpu);
229 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
230 	}
231 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
232 	ia64_set_itm(local_cpu_data->itm_next);
233 }
234 
235 static int nojitter;
236 
237 static int __init nojitter_setup(char *str)
238 {
239 	nojitter = 1;
240 	printk("Jitter checking for ITC timers disabled\n");
241 	return 1;
242 }
243 
244 __setup("nojitter", nojitter_setup);
245 
246 
247 void ia64_init_itm(void)
248 {
249 	unsigned long platform_base_freq, itc_freq;
250 	struct pal_freq_ratio itc_ratio, proc_ratio;
251 	long status, platform_base_drift, itc_drift;
252 
253 	/*
254 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
255 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
256 	 * and the base frequency.
257 	 */
258 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
259 				    &platform_base_freq, &platform_base_drift);
260 	if (status != 0) {
261 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
262 	} else {
263 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
264 		if (status != 0)
265 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
266 	}
267 	if (status != 0) {
268 		/* invent "random" values */
269 		printk(KERN_ERR
270 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
271 		platform_base_freq = 100000000;
272 		platform_base_drift = -1;	/* no drift info */
273 		itc_ratio.num = 3;
274 		itc_ratio.den = 1;
275 	}
276 	if (platform_base_freq < 40000000) {
277 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
278 		       platform_base_freq);
279 		platform_base_freq = 75000000;
280 		platform_base_drift = -1;
281 	}
282 	if (!proc_ratio.den)
283 		proc_ratio.den = 1;	/* avoid division by zero */
284 	if (!itc_ratio.den)
285 		itc_ratio.den = 1;	/* avoid division by zero */
286 
287 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
288 
289 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
290 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
291 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
292 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
293 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
294 
295 	if (platform_base_drift != -1) {
296 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
297 		printk("+/-%ldppm\n", itc_drift);
298 	} else {
299 		itc_drift = -1;
300 		printk("\n");
301 	}
302 
303 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
304 	local_cpu_data->itc_freq = itc_freq;
305 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
306 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
307 					+ itc_freq/2)/itc_freq;
308 
309 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
310 #ifdef CONFIG_SMP
311 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
312 		 * Jitter compensation requires a cmpxchg which may limit
313 		 * the scalability of the syscalls for retrieving time.
314 		 * The ITC synchronization is usually successful to within a few
315 		 * ITC ticks but this is not a sure thing. If you need to improve
316 		 * timer performance in SMP situations then boot the kernel with the
317 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
318 		 * even going backward) if the ITC offsets between the individual CPUs
319 		 * are too large.
320 		 */
321 		if (!nojitter)
322 			itc_jitter_data.itc_jitter = 1;
323 #endif
324 	} else
325 		/*
326 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
327 		 * ITC values may fluctuate significantly between processors.
328 		 * Clock should not be used for hrtimers. Mark itc as only
329 		 * useful for boot and testing.
330 		 *
331 		 * Note that jitter compensation is off! There is no point of
332 		 * synchronizing ITCs since they may be large differentials
333 		 * that change over time.
334 		 *
335 		 * The only way to fix this would be to repeatedly sync the
336 		 * ITCs. Until that time we have to avoid ITC.
337 		 */
338 		clocksource_itc.rating = 50;
339 
340 	paravirt_init_missing_ticks_accounting(smp_processor_id());
341 
342 	/* avoid softlock up message when cpu is unplug and plugged again. */
343 	touch_softlockup_watchdog();
344 
345 	/* Setup the CPU local timer tick */
346 	ia64_cpu_local_tick();
347 
348 	if (!itc_clocksource) {
349 		clocksource_register_hz(&clocksource_itc,
350 						local_cpu_data->itc_freq);
351 		itc_clocksource = &clocksource_itc;
352 	}
353 }
354 
355 static cycle_t itc_get_cycles(struct clocksource *cs)
356 {
357 	unsigned long lcycle, now, ret;
358 
359 	if (!itc_jitter_data.itc_jitter)
360 		return get_cycles();
361 
362 	lcycle = itc_jitter_data.itc_lastcycle;
363 	now = get_cycles();
364 	if (lcycle && time_after(lcycle, now))
365 		return lcycle;
366 
367 	/*
368 	 * Keep track of the last timer value returned.
369 	 * In an SMP environment, you could lose out in contention of
370 	 * cmpxchg. If so, your cmpxchg returns new value which the
371 	 * winner of contention updated to. Use the new value instead.
372 	 */
373 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
374 	if (unlikely(ret != lcycle))
375 		return ret;
376 
377 	return now;
378 }
379 
380 
381 static struct irqaction timer_irqaction = {
382 	.handler =	timer_interrupt,
383 	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
384 	.name =		"timer"
385 };
386 
387 static struct platform_device rtc_efi_dev = {
388 	.name = "rtc-efi",
389 	.id = -1,
390 };
391 
392 static int __init rtc_init(void)
393 {
394 	if (platform_device_register(&rtc_efi_dev) < 0)
395 		printk(KERN_ERR "unable to register rtc device...\n");
396 
397 	/* not necessarily an error */
398 	return 0;
399 }
400 module_init(rtc_init);
401 
402 void read_persistent_clock(struct timespec *ts)
403 {
404 	efi_gettimeofday(ts);
405 }
406 
407 void __init
408 time_init (void)
409 {
410 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
411 	ia64_init_itm();
412 }
413 
414 /*
415  * Generic udelay assumes that if preemption is allowed and the thread
416  * migrates to another CPU, that the ITC values are synchronized across
417  * all CPUs.
418  */
419 static void
420 ia64_itc_udelay (unsigned long usecs)
421 {
422 	unsigned long start = ia64_get_itc();
423 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
424 
425 	while (time_before(ia64_get_itc(), end))
426 		cpu_relax();
427 }
428 
429 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
430 
431 void
432 udelay (unsigned long usecs)
433 {
434 	(*ia64_udelay)(usecs);
435 }
436 EXPORT_SYMBOL(udelay);
437 
438 /* IA64 doesn't cache the timezone */
439 void update_vsyscall_tz(void)
440 {
441 }
442 
443 void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
444 			struct clocksource *c, u32 mult)
445 {
446 	write_seqcount_begin(&fsyscall_gtod_data.seq);
447 
448         /* copy fsyscall clock data */
449         fsyscall_gtod_data.clk_mask = c->mask;
450         fsyscall_gtod_data.clk_mult = mult;
451         fsyscall_gtod_data.clk_shift = c->shift;
452         fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
453         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
454 
455 	/* copy kernel time structures */
456         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
457         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
458 	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
459 							+ wall->tv_sec;
460 	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
461 							+ wall->tv_nsec;
462 
463 	/* normalize */
464 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
465 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
466 		fsyscall_gtod_data.monotonic_time.tv_sec++;
467 	}
468 
469 	write_seqcount_end(&fsyscall_gtod_data.seq);
470 }
471 
472