1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP boot-related support 4 * 5 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * Copyright (C) 2001, 2004-2005 Intel Corp 8 * Rohit Seth <rohit.seth@intel.com> 9 * Suresh Siddha <suresh.b.siddha@intel.com> 10 * Gordon Jin <gordon.jin@intel.com> 11 * Ashok Raj <ashok.raj@intel.com> 12 * 13 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here. 14 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code. 15 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence. 16 * smp_boot_cpus()/smp_commence() is replaced by 17 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done(). 18 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 19 * 04/12/26 Jin Gordon <gordon.jin@intel.com> 20 * 04/12/26 Rohit Seth <rohit.seth@intel.com> 21 * Add multi-threading and multi-core detection 22 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com> 23 * Setup cpu_sibling_map and cpu_core_map 24 */ 25 26 #include <linux/module.h> 27 #include <linux/acpi.h> 28 #include <linux/memblock.h> 29 #include <linux/cpu.h> 30 #include <linux/delay.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/irq.h> 34 #include <linux/kernel.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/mm.h> 37 #include <linux/notifier.h> 38 #include <linux/smp.h> 39 #include <linux/spinlock.h> 40 #include <linux/efi.h> 41 #include <linux/percpu.h> 42 #include <linux/bitops.h> 43 44 #include <linux/atomic.h> 45 #include <asm/cache.h> 46 #include <asm/current.h> 47 #include <asm/delay.h> 48 #include <asm/io.h> 49 #include <asm/irq.h> 50 #include <asm/machvec.h> 51 #include <asm/mca.h> 52 #include <asm/page.h> 53 #include <asm/pgalloc.h> 54 #include <asm/pgtable.h> 55 #include <asm/processor.h> 56 #include <asm/ptrace.h> 57 #include <asm/sal.h> 58 #include <asm/tlbflush.h> 59 #include <asm/unistd.h> 60 #include <asm/sn/arch.h> 61 62 #define SMP_DEBUG 0 63 64 #if SMP_DEBUG 65 #define Dprintk(x...) printk(x) 66 #else 67 #define Dprintk(x...) 68 #endif 69 70 #ifdef CONFIG_HOTPLUG_CPU 71 #ifdef CONFIG_PERMIT_BSP_REMOVE 72 #define bsp_remove_ok 1 73 #else 74 #define bsp_remove_ok 0 75 #endif 76 77 /* 78 * Global array allocated for NR_CPUS at boot time 79 */ 80 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS]; 81 82 /* 83 * start_ap in head.S uses this to store current booting cpu 84 * info. 85 */ 86 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0]; 87 88 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]); 89 90 #else 91 #define set_brendez_area(x) 92 #endif 93 94 95 /* 96 * ITC synchronization related stuff: 97 */ 98 #define MASTER (0) 99 #define SLAVE (SMP_CACHE_BYTES/8) 100 101 #define NUM_ROUNDS 64 /* magic value */ 102 #define NUM_ITERS 5 /* likewise */ 103 104 static DEFINE_SPINLOCK(itc_sync_lock); 105 static volatile unsigned long go[SLAVE + 1]; 106 107 #define DEBUG_ITC_SYNC 0 108 109 extern void start_ap (void); 110 extern unsigned long ia64_iobase; 111 112 struct task_struct *task_for_booting_cpu; 113 114 /* 115 * State for each CPU 116 */ 117 DEFINE_PER_CPU(int, cpu_state); 118 119 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned; 120 EXPORT_SYMBOL(cpu_core_map); 121 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map); 122 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 123 124 int smp_num_siblings = 1; 125 126 /* which logical CPU number maps to which CPU (physical APIC ID) */ 127 volatile int ia64_cpu_to_sapicid[NR_CPUS]; 128 EXPORT_SYMBOL(ia64_cpu_to_sapicid); 129 130 static cpumask_t cpu_callin_map; 131 132 struct smp_boot_data smp_boot_data __initdata; 133 134 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */ 135 136 char __initdata no_int_routing; 137 138 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */ 139 140 #ifdef CONFIG_FORCE_CPEI_RETARGET 141 #define CPEI_OVERRIDE_DEFAULT (1) 142 #else 143 #define CPEI_OVERRIDE_DEFAULT (0) 144 #endif 145 146 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT; 147 148 static int __init 149 cmdl_force_cpei(char *str) 150 { 151 int value=0; 152 153 get_option (&str, &value); 154 force_cpei_retarget = value; 155 156 return 1; 157 } 158 159 __setup("force_cpei=", cmdl_force_cpei); 160 161 static int __init 162 nointroute (char *str) 163 { 164 no_int_routing = 1; 165 printk ("no_int_routing on\n"); 166 return 1; 167 } 168 169 __setup("nointroute", nointroute); 170 171 static void fix_b0_for_bsp(void) 172 { 173 #ifdef CONFIG_HOTPLUG_CPU 174 int cpuid; 175 static int fix_bsp_b0 = 1; 176 177 cpuid = smp_processor_id(); 178 179 /* 180 * Cache the b0 value on the first AP that comes up 181 */ 182 if (!(fix_bsp_b0 && cpuid)) 183 return; 184 185 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0]; 186 printk ("Fixed BSP b0 value from CPU %d\n", cpuid); 187 188 fix_bsp_b0 = 0; 189 #endif 190 } 191 192 void 193 sync_master (void *arg) 194 { 195 unsigned long flags, i; 196 197 go[MASTER] = 0; 198 199 local_irq_save(flags); 200 { 201 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) { 202 while (!go[MASTER]) 203 cpu_relax(); 204 go[MASTER] = 0; 205 go[SLAVE] = ia64_get_itc(); 206 } 207 } 208 local_irq_restore(flags); 209 } 210 211 /* 212 * Return the number of cycles by which our itc differs from the itc on the master 213 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master, 214 * negative that it is behind. 215 */ 216 static inline long 217 get_delta (long *rt, long *master) 218 { 219 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 220 unsigned long tcenter, t0, t1, tm; 221 long i; 222 223 for (i = 0; i < NUM_ITERS; ++i) { 224 t0 = ia64_get_itc(); 225 go[MASTER] = 1; 226 while (!(tm = go[SLAVE])) 227 cpu_relax(); 228 go[SLAVE] = 0; 229 t1 = ia64_get_itc(); 230 231 if (t1 - t0 < best_t1 - best_t0) 232 best_t0 = t0, best_t1 = t1, best_tm = tm; 233 } 234 235 *rt = best_t1 - best_t0; 236 *master = best_tm - best_t0; 237 238 /* average best_t0 and best_t1 without overflow: */ 239 tcenter = (best_t0/2 + best_t1/2); 240 if (best_t0 % 2 + best_t1 % 2 == 2) 241 ++tcenter; 242 return tcenter - best_tm; 243 } 244 245 /* 246 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU 247 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of 248 * unaccounted-for errors (such as getting a machine check in the middle of a calibration 249 * step). The basic idea is for the slave to ask the master what itc value it has and to 250 * read its own itc before and after the master responds. Each iteration gives us three 251 * timestamps: 252 * 253 * slave master 254 * 255 * t0 ---\ 256 * ---\ 257 * ---> 258 * tm 259 * /--- 260 * /--- 261 * t1 <--- 262 * 263 * 264 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0 265 * and t1. If we achieve this, the clocks are synchronized provided the interconnect 266 * between the slave and the master is symmetric. Even if the interconnect were 267 * asymmetric, we would still know that the synchronization error is smaller than the 268 * roundtrip latency (t0 - t1). 269 * 270 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to 271 * within one or two cycles. However, we can only *guarantee* that the synchronization is 272 * accurate to within a round-trip time, which is typically in the range of several 273 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually 274 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better 275 * than half a micro second or so. 276 */ 277 void 278 ia64_sync_itc (unsigned int master) 279 { 280 long i, delta, adj, adjust_latency = 0, done = 0; 281 unsigned long flags, rt, master_time_stamp, bound; 282 #if DEBUG_ITC_SYNC 283 struct { 284 long rt; /* roundtrip time */ 285 long master; /* master's timestamp */ 286 long diff; /* difference between midpoint and master's timestamp */ 287 long lat; /* estimate of itc adjustment latency */ 288 } t[NUM_ROUNDS]; 289 #endif 290 291 /* 292 * Make sure local timer ticks are disabled while we sync. If 293 * they were enabled, we'd have to worry about nasty issues 294 * like setting the ITC ahead of (or a long time before) the 295 * next scheduled tick. 296 */ 297 BUG_ON((ia64_get_itv() & (1 << 16)) == 0); 298 299 go[MASTER] = 1; 300 301 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) { 302 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master); 303 return; 304 } 305 306 while (go[MASTER]) 307 cpu_relax(); /* wait for master to be ready */ 308 309 spin_lock_irqsave(&itc_sync_lock, flags); 310 { 311 for (i = 0; i < NUM_ROUNDS; ++i) { 312 delta = get_delta(&rt, &master_time_stamp); 313 if (delta == 0) { 314 done = 1; /* let's lock on to this... */ 315 bound = rt; 316 } 317 318 if (!done) { 319 if (i > 0) { 320 adjust_latency += -delta; 321 adj = -delta + adjust_latency/4; 322 } else 323 adj = -delta; 324 325 ia64_set_itc(ia64_get_itc() + adj); 326 } 327 #if DEBUG_ITC_SYNC 328 t[i].rt = rt; 329 t[i].master = master_time_stamp; 330 t[i].diff = delta; 331 t[i].lat = adjust_latency/4; 332 #endif 333 } 334 } 335 spin_unlock_irqrestore(&itc_sync_lock, flags); 336 337 #if DEBUG_ITC_SYNC 338 for (i = 0; i < NUM_ROUNDS; ++i) 339 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 340 t[i].rt, t[i].master, t[i].diff, t[i].lat); 341 #endif 342 343 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, " 344 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt); 345 } 346 347 /* 348 * Ideally sets up per-cpu profiling hooks. Doesn't do much now... 349 */ 350 static inline void smp_setup_percpu_timer(void) 351 { 352 } 353 354 static void 355 smp_callin (void) 356 { 357 int cpuid, phys_id, itc_master; 358 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo; 359 extern void ia64_init_itm(void); 360 extern volatile int time_keeper_id; 361 362 #ifdef CONFIG_PERFMON 363 extern void pfm_init_percpu(void); 364 #endif 365 366 cpuid = smp_processor_id(); 367 phys_id = hard_smp_processor_id(); 368 itc_master = time_keeper_id; 369 370 if (cpu_online(cpuid)) { 371 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n", 372 phys_id, cpuid); 373 BUG(); 374 } 375 376 fix_b0_for_bsp(); 377 378 /* 379 * numa_node_id() works after this. 380 */ 381 set_numa_node(cpu_to_node_map[cpuid]); 382 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid])); 383 384 spin_lock(&vector_lock); 385 /* Setup the per cpu irq handling data structures */ 386 __setup_vector_irq(cpuid); 387 notify_cpu_starting(cpuid); 388 set_cpu_online(cpuid, true); 389 per_cpu(cpu_state, cpuid) = CPU_ONLINE; 390 spin_unlock(&vector_lock); 391 392 smp_setup_percpu_timer(); 393 394 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */ 395 396 #ifdef CONFIG_PERFMON 397 pfm_init_percpu(); 398 #endif 399 400 local_irq_enable(); 401 402 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { 403 /* 404 * Synchronize the ITC with the BP. Need to do this after irqs are 405 * enabled because ia64_sync_itc() calls smp_call_function_single(), which 406 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls 407 * local_bh_enable(), which bugs out if irqs are not enabled... 408 */ 409 Dprintk("Going to syncup ITC with ITC Master.\n"); 410 ia64_sync_itc(itc_master); 411 } 412 413 /* 414 * Get our bogomips. 415 */ 416 ia64_init_itm(); 417 418 /* 419 * Delay calibration can be skipped if new processor is identical to the 420 * previous processor. 421 */ 422 last_cpuinfo = cpu_data(cpuid - 1); 423 this_cpuinfo = local_cpu_data; 424 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq || 425 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq || 426 last_cpuinfo->features != this_cpuinfo->features || 427 last_cpuinfo->revision != this_cpuinfo->revision || 428 last_cpuinfo->family != this_cpuinfo->family || 429 last_cpuinfo->archrev != this_cpuinfo->archrev || 430 last_cpuinfo->model != this_cpuinfo->model) 431 calibrate_delay(); 432 local_cpu_data->loops_per_jiffy = loops_per_jiffy; 433 434 /* 435 * Allow the master to continue. 436 */ 437 cpumask_set_cpu(cpuid, &cpu_callin_map); 438 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid); 439 } 440 441 442 /* 443 * Activate a secondary processor. head.S calls this. 444 */ 445 int 446 start_secondary (void *unused) 447 { 448 /* Early console may use I/O ports */ 449 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); 450 #ifndef CONFIG_PRINTK_TIME 451 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id()); 452 #endif 453 efi_map_pal_code(); 454 cpu_init(); 455 preempt_disable(); 456 smp_callin(); 457 458 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 459 return 0; 460 } 461 462 static int 463 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle) 464 { 465 int timeout; 466 467 task_for_booting_cpu = idle; 468 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid); 469 470 set_brendez_area(cpu); 471 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0); 472 473 /* 474 * Wait 10s total for the AP to start 475 */ 476 Dprintk("Waiting on callin_map ..."); 477 for (timeout = 0; timeout < 100000; timeout++) { 478 if (cpumask_test_cpu(cpu, &cpu_callin_map)) 479 break; /* It has booted */ 480 barrier(); /* Make sure we re-read cpu_callin_map */ 481 udelay(100); 482 } 483 Dprintk("\n"); 484 485 if (!cpumask_test_cpu(cpu, &cpu_callin_map)) { 486 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid); 487 ia64_cpu_to_sapicid[cpu] = -1; 488 set_cpu_online(cpu, false); /* was set in smp_callin() */ 489 return -EINVAL; 490 } 491 return 0; 492 } 493 494 static int __init 495 decay (char *str) 496 { 497 int ticks; 498 get_option (&str, &ticks); 499 return 1; 500 } 501 502 __setup("decay=", decay); 503 504 /* 505 * Initialize the logical CPU number to SAPICID mapping 506 */ 507 void __init 508 smp_build_cpu_map (void) 509 { 510 int sapicid, cpu, i; 511 int boot_cpu_id = hard_smp_processor_id(); 512 513 for (cpu = 0; cpu < NR_CPUS; cpu++) { 514 ia64_cpu_to_sapicid[cpu] = -1; 515 } 516 517 ia64_cpu_to_sapicid[0] = boot_cpu_id; 518 init_cpu_present(cpumask_of(0)); 519 set_cpu_possible(0, true); 520 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) { 521 sapicid = smp_boot_data.cpu_phys_id[i]; 522 if (sapicid == boot_cpu_id) 523 continue; 524 set_cpu_present(cpu, true); 525 set_cpu_possible(cpu, true); 526 ia64_cpu_to_sapicid[cpu] = sapicid; 527 cpu++; 528 } 529 } 530 531 /* 532 * Cycle through the APs sending Wakeup IPIs to boot each. 533 */ 534 void __init 535 smp_prepare_cpus (unsigned int max_cpus) 536 { 537 int boot_cpu_id = hard_smp_processor_id(); 538 539 /* 540 * Initialize the per-CPU profiling counter/multiplier 541 */ 542 543 smp_setup_percpu_timer(); 544 545 cpumask_set_cpu(0, &cpu_callin_map); 546 547 local_cpu_data->loops_per_jiffy = loops_per_jiffy; 548 ia64_cpu_to_sapicid[0] = boot_cpu_id; 549 550 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id); 551 552 current_thread_info()->cpu = 0; 553 554 /* 555 * If SMP should be disabled, then really disable it! 556 */ 557 if (!max_cpus) { 558 printk(KERN_INFO "SMP mode deactivated.\n"); 559 init_cpu_online(cpumask_of(0)); 560 init_cpu_present(cpumask_of(0)); 561 init_cpu_possible(cpumask_of(0)); 562 return; 563 } 564 } 565 566 void smp_prepare_boot_cpu(void) 567 { 568 set_cpu_online(smp_processor_id(), true); 569 cpumask_set_cpu(smp_processor_id(), &cpu_callin_map); 570 set_numa_node(cpu_to_node_map[smp_processor_id()]); 571 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 572 } 573 574 #ifdef CONFIG_HOTPLUG_CPU 575 static inline void 576 clear_cpu_sibling_map(int cpu) 577 { 578 int i; 579 580 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) 581 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); 582 for_each_cpu(i, &cpu_core_map[cpu]) 583 cpumask_clear_cpu(cpu, &cpu_core_map[i]); 584 585 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE; 586 } 587 588 static void 589 remove_siblinginfo(int cpu) 590 { 591 int last = 0; 592 593 if (cpu_data(cpu)->threads_per_core == 1 && 594 cpu_data(cpu)->cores_per_socket == 1) { 595 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]); 596 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu)); 597 return; 598 } 599 600 last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0); 601 602 /* remove it from all sibling map's */ 603 clear_cpu_sibling_map(cpu); 604 } 605 606 extern void fixup_irqs(void); 607 608 int migrate_platform_irqs(unsigned int cpu) 609 { 610 int new_cpei_cpu; 611 struct irq_data *data = NULL; 612 const struct cpumask *mask; 613 int retval = 0; 614 615 /* 616 * dont permit CPEI target to removed. 617 */ 618 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) { 619 printk ("CPU (%d) is CPEI Target\n", cpu); 620 if (can_cpei_retarget()) { 621 /* 622 * Now re-target the CPEI to a different processor 623 */ 624 new_cpei_cpu = cpumask_any(cpu_online_mask); 625 mask = cpumask_of(new_cpei_cpu); 626 set_cpei_target_cpu(new_cpei_cpu); 627 data = irq_get_irq_data(ia64_cpe_irq); 628 /* 629 * Switch for now, immediately, we need to do fake intr 630 * as other interrupts, but need to study CPEI behaviour with 631 * polling before making changes. 632 */ 633 if (data && data->chip) { 634 data->chip->irq_disable(data); 635 data->chip->irq_set_affinity(data, mask, false); 636 data->chip->irq_enable(data); 637 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu); 638 } 639 } 640 if (!data) { 641 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu); 642 retval = -EBUSY; 643 } 644 } 645 return retval; 646 } 647 648 /* must be called with cpucontrol mutex held */ 649 int __cpu_disable(void) 650 { 651 int cpu = smp_processor_id(); 652 653 /* 654 * dont permit boot processor for now 655 */ 656 if (cpu == 0 && !bsp_remove_ok) { 657 printk ("Your platform does not support removal of BSP\n"); 658 return (-EBUSY); 659 } 660 661 if (ia64_platform_is("sn2")) { 662 if (!sn_cpu_disable_allowed(cpu)) 663 return -EBUSY; 664 } 665 666 set_cpu_online(cpu, false); 667 668 if (migrate_platform_irqs(cpu)) { 669 set_cpu_online(cpu, true); 670 return -EBUSY; 671 } 672 673 remove_siblinginfo(cpu); 674 fixup_irqs(); 675 local_flush_tlb_all(); 676 cpumask_clear_cpu(cpu, &cpu_callin_map); 677 return 0; 678 } 679 680 void __cpu_die(unsigned int cpu) 681 { 682 unsigned int i; 683 684 for (i = 0; i < 100; i++) { 685 /* They ack this in play_dead by setting CPU_DEAD */ 686 if (per_cpu(cpu_state, cpu) == CPU_DEAD) 687 { 688 printk ("CPU %d is now offline\n", cpu); 689 return; 690 } 691 msleep(100); 692 } 693 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 694 } 695 #endif /* CONFIG_HOTPLUG_CPU */ 696 697 void 698 smp_cpus_done (unsigned int dummy) 699 { 700 int cpu; 701 unsigned long bogosum = 0; 702 703 /* 704 * Allow the user to impress friends. 705 */ 706 707 for_each_online_cpu(cpu) { 708 bogosum += cpu_data(cpu)->loops_per_jiffy; 709 } 710 711 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", 712 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); 713 } 714 715 static inline void set_cpu_sibling_map(int cpu) 716 { 717 int i; 718 719 for_each_online_cpu(i) { 720 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) { 721 cpumask_set_cpu(i, &cpu_core_map[cpu]); 722 cpumask_set_cpu(cpu, &cpu_core_map[i]); 723 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) { 724 cpumask_set_cpu(i, 725 &per_cpu(cpu_sibling_map, cpu)); 726 cpumask_set_cpu(cpu, 727 &per_cpu(cpu_sibling_map, i)); 728 } 729 } 730 } 731 } 732 733 int 734 __cpu_up(unsigned int cpu, struct task_struct *tidle) 735 { 736 int ret; 737 int sapicid; 738 739 sapicid = ia64_cpu_to_sapicid[cpu]; 740 if (sapicid == -1) 741 return -EINVAL; 742 743 /* 744 * Already booted cpu? not valid anymore since we dont 745 * do idle loop tightspin anymore. 746 */ 747 if (cpumask_test_cpu(cpu, &cpu_callin_map)) 748 return -EINVAL; 749 750 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 751 /* Processor goes to start_secondary(), sets online flag */ 752 ret = do_boot_cpu(sapicid, cpu, tidle); 753 if (ret < 0) 754 return ret; 755 756 if (cpu_data(cpu)->threads_per_core == 1 && 757 cpu_data(cpu)->cores_per_socket == 1) { 758 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu)); 759 cpumask_set_cpu(cpu, &cpu_core_map[cpu]); 760 return 0; 761 } 762 763 set_cpu_sibling_map(cpu); 764 765 return 0; 766 } 767 768 /* 769 * Assume that CPUs have been discovered by some platform-dependent interface. For 770 * SoftSDV/Lion, that would be ACPI. 771 * 772 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP(). 773 */ 774 void __init 775 init_smp_config(void) 776 { 777 struct fptr { 778 unsigned long fp; 779 unsigned long gp; 780 } *ap_startup; 781 long sal_ret; 782 783 /* Tell SAL where to drop the APs. */ 784 ap_startup = (struct fptr *) start_ap; 785 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ, 786 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0); 787 if (sal_ret < 0) 788 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n", 789 ia64_sal_strerror(sal_ret)); 790 } 791 792 /* 793 * identify_siblings(cpu) gets called from identify_cpu. This populates the 794 * information related to logical execution units in per_cpu_data structure. 795 */ 796 void identify_siblings(struct cpuinfo_ia64 *c) 797 { 798 long status; 799 u16 pltid; 800 pal_logical_to_physical_t info; 801 802 status = ia64_pal_logical_to_phys(-1, &info); 803 if (status != PAL_STATUS_SUCCESS) { 804 if (status != PAL_STATUS_UNIMPLEMENTED) { 805 printk(KERN_ERR 806 "ia64_pal_logical_to_phys failed with %ld\n", 807 status); 808 return; 809 } 810 811 info.overview_ppid = 0; 812 info.overview_cpp = 1; 813 info.overview_tpc = 1; 814 } 815 816 status = ia64_sal_physical_id_info(&pltid); 817 if (status != PAL_STATUS_SUCCESS) { 818 if (status != PAL_STATUS_UNIMPLEMENTED) 819 printk(KERN_ERR 820 "ia64_sal_pltid failed with %ld\n", 821 status); 822 return; 823 } 824 825 c->socket_id = (pltid << 8) | info.overview_ppid; 826 827 if (info.overview_cpp == 1 && info.overview_tpc == 1) 828 return; 829 830 c->cores_per_socket = info.overview_cpp; 831 c->threads_per_core = info.overview_tpc; 832 c->num_log = info.overview_num_log; 833 834 c->core_id = info.log1_cid; 835 c->thread_id = info.log1_tid; 836 } 837 838 /* 839 * returns non zero, if multi-threading is enabled 840 * on at least one physical package. Due to hotplug cpu 841 * and (maxcpus=), all threads may not necessarily be enabled 842 * even though the processor supports multi-threading. 843 */ 844 int is_multithreading_enabled(void) 845 { 846 int i, j; 847 848 for_each_present_cpu(i) { 849 for_each_present_cpu(j) { 850 if (j == i) 851 continue; 852 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) { 853 if (cpu_data(j)->core_id == cpu_data(i)->core_id) 854 return 1; 855 } 856 } 857 } 858 return 0; 859 } 860 EXPORT_SYMBOL_GPL(is_multithreading_enabled); 861