xref: /openbmc/linux/arch/ia64/kernel/smpboot.c (revision b285d2ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP boot-related support
4  *
5  * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  * Copyright (C) 2001, 2004-2005 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  *	Ashok Raj  <ashok.raj@intel.com>
12  *
13  * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
14  * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
15  * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
16  *						smp_boot_cpus()/smp_commence() is replaced by
17  *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
18  * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
19  * 04/12/26 Jin Gordon <gordon.jin@intel.com>
20  * 04/12/26 Rohit Seth <rohit.seth@intel.com>
21  *						Add multi-threading and multi-core detection
22  * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
23  *						Setup cpu_sibling_map and cpu_core_map
24  */
25 
26 #include <linux/module.h>
27 #include <linux/acpi.h>
28 #include <linux/memblock.h>
29 #include <linux/cpu.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/irq.h>
34 #include <linux/kernel.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/mm.h>
37 #include <linux/notifier.h>
38 #include <linux/smp.h>
39 #include <linux/spinlock.h>
40 #include <linux/efi.h>
41 #include <linux/percpu.h>
42 #include <linux/bitops.h>
43 
44 #include <linux/atomic.h>
45 #include <asm/cache.h>
46 #include <asm/current.h>
47 #include <asm/delay.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/mca.h>
51 #include <asm/page.h>
52 #include <asm/processor.h>
53 #include <asm/ptrace.h>
54 #include <asm/sal.h>
55 #include <asm/tlbflush.h>
56 #include <asm/unistd.h>
57 
58 #define SMP_DEBUG 0
59 
60 #if SMP_DEBUG
61 #define Dprintk(x...)  printk(x)
62 #else
63 #define Dprintk(x...)
64 #endif
65 
66 #ifdef CONFIG_HOTPLUG_CPU
67 #ifdef CONFIG_PERMIT_BSP_REMOVE
68 #define bsp_remove_ok	1
69 #else
70 #define bsp_remove_ok	0
71 #endif
72 
73 /*
74  * Global array allocated for NR_CPUS at boot time
75  */
76 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
77 
78 /*
79  * start_ap in head.S uses this to store current booting cpu
80  * info.
81  */
82 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
83 
84 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
85 
86 #else
87 #define set_brendez_area(x)
88 #endif
89 
90 
91 /*
92  * ITC synchronization related stuff:
93  */
94 #define MASTER	(0)
95 #define SLAVE	(SMP_CACHE_BYTES/8)
96 
97 #define NUM_ROUNDS	64	/* magic value */
98 #define NUM_ITERS	5	/* likewise */
99 
100 static DEFINE_SPINLOCK(itc_sync_lock);
101 static volatile unsigned long go[SLAVE + 1];
102 
103 #define DEBUG_ITC_SYNC	0
104 
105 extern void start_ap (void);
106 extern unsigned long ia64_iobase;
107 
108 struct task_struct *task_for_booting_cpu;
109 
110 /*
111  * State for each CPU
112  */
113 DEFINE_PER_CPU(int, cpu_state);
114 
115 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
116 EXPORT_SYMBOL(cpu_core_map);
117 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
118 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
119 
120 int smp_num_siblings = 1;
121 
122 /* which logical CPU number maps to which CPU (physical APIC ID) */
123 volatile int ia64_cpu_to_sapicid[NR_CPUS];
124 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
125 
126 static cpumask_t cpu_callin_map;
127 
128 struct smp_boot_data smp_boot_data __initdata;
129 
130 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
131 
132 char __initdata no_int_routing;
133 
134 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
135 
136 #ifdef CONFIG_FORCE_CPEI_RETARGET
137 #define CPEI_OVERRIDE_DEFAULT	(1)
138 #else
139 #define CPEI_OVERRIDE_DEFAULT	(0)
140 #endif
141 
142 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
143 
144 static int __init
145 cmdl_force_cpei(char *str)
146 {
147 	int value=0;
148 
149 	get_option (&str, &value);
150 	force_cpei_retarget = value;
151 
152 	return 1;
153 }
154 
155 __setup("force_cpei=", cmdl_force_cpei);
156 
157 static int __init
158 nointroute (char *str)
159 {
160 	no_int_routing = 1;
161 	printk ("no_int_routing on\n");
162 	return 1;
163 }
164 
165 __setup("nointroute", nointroute);
166 
167 static void fix_b0_for_bsp(void)
168 {
169 #ifdef CONFIG_HOTPLUG_CPU
170 	int cpuid;
171 	static int fix_bsp_b0 = 1;
172 
173 	cpuid = smp_processor_id();
174 
175 	/*
176 	 * Cache the b0 value on the first AP that comes up
177 	 */
178 	if (!(fix_bsp_b0 && cpuid))
179 		return;
180 
181 	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
182 	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
183 
184 	fix_bsp_b0 = 0;
185 #endif
186 }
187 
188 void
189 sync_master (void *arg)
190 {
191 	unsigned long flags, i;
192 
193 	go[MASTER] = 0;
194 
195 	local_irq_save(flags);
196 	{
197 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
198 			while (!go[MASTER])
199 				cpu_relax();
200 			go[MASTER] = 0;
201 			go[SLAVE] = ia64_get_itc();
202 		}
203 	}
204 	local_irq_restore(flags);
205 }
206 
207 /*
208  * Return the number of cycles by which our itc differs from the itc on the master
209  * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
210  * negative that it is behind.
211  */
212 static inline long
213 get_delta (long *rt, long *master)
214 {
215 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
216 	unsigned long tcenter, t0, t1, tm;
217 	long i;
218 
219 	for (i = 0; i < NUM_ITERS; ++i) {
220 		t0 = ia64_get_itc();
221 		go[MASTER] = 1;
222 		while (!(tm = go[SLAVE]))
223 			cpu_relax();
224 		go[SLAVE] = 0;
225 		t1 = ia64_get_itc();
226 
227 		if (t1 - t0 < best_t1 - best_t0)
228 			best_t0 = t0, best_t1 = t1, best_tm = tm;
229 	}
230 
231 	*rt = best_t1 - best_t0;
232 	*master = best_tm - best_t0;
233 
234 	/* average best_t0 and best_t1 without overflow: */
235 	tcenter = (best_t0/2 + best_t1/2);
236 	if (best_t0 % 2 + best_t1 % 2 == 2)
237 		++tcenter;
238 	return tcenter - best_tm;
239 }
240 
241 /*
242  * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
243  * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
244  * unaccounted-for errors (such as getting a machine check in the middle of a calibration
245  * step).  The basic idea is for the slave to ask the master what itc value it has and to
246  * read its own itc before and after the master responds.  Each iteration gives us three
247  * timestamps:
248  *
249  *	slave		master
250  *
251  *	t0 ---\
252  *             ---\
253  *		   --->
254  *			tm
255  *		   /---
256  *	       /---
257  *	t1 <---
258  *
259  *
260  * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
261  * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
262  * between the slave and the master is symmetric.  Even if the interconnect were
263  * asymmetric, we would still know that the synchronization error is smaller than the
264  * roundtrip latency (t0 - t1).
265  *
266  * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
267  * within one or two cycles.  However, we can only *guarantee* that the synchronization is
268  * accurate to within a round-trip time, which is typically in the range of several
269  * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
270  * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
271  * than half a micro second or so.
272  */
273 void
274 ia64_sync_itc (unsigned int master)
275 {
276 	long i, delta, adj, adjust_latency = 0, done = 0;
277 	unsigned long flags, rt, master_time_stamp, bound;
278 #if DEBUG_ITC_SYNC
279 	struct {
280 		long rt;	/* roundtrip time */
281 		long master;	/* master's timestamp */
282 		long diff;	/* difference between midpoint and master's timestamp */
283 		long lat;	/* estimate of itc adjustment latency */
284 	} t[NUM_ROUNDS];
285 #endif
286 
287 	/*
288 	 * Make sure local timer ticks are disabled while we sync.  If
289 	 * they were enabled, we'd have to worry about nasty issues
290 	 * like setting the ITC ahead of (or a long time before) the
291 	 * next scheduled tick.
292 	 */
293 	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
294 
295 	go[MASTER] = 1;
296 
297 	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
298 		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
299 		return;
300 	}
301 
302 	while (go[MASTER])
303 		cpu_relax();	/* wait for master to be ready */
304 
305 	spin_lock_irqsave(&itc_sync_lock, flags);
306 	{
307 		for (i = 0; i < NUM_ROUNDS; ++i) {
308 			delta = get_delta(&rt, &master_time_stamp);
309 			if (delta == 0) {
310 				done = 1;	/* let's lock on to this... */
311 				bound = rt;
312 			}
313 
314 			if (!done) {
315 				if (i > 0) {
316 					adjust_latency += -delta;
317 					adj = -delta + adjust_latency/4;
318 				} else
319 					adj = -delta;
320 
321 				ia64_set_itc(ia64_get_itc() + adj);
322 			}
323 #if DEBUG_ITC_SYNC
324 			t[i].rt = rt;
325 			t[i].master = master_time_stamp;
326 			t[i].diff = delta;
327 			t[i].lat = adjust_latency/4;
328 #endif
329 		}
330 	}
331 	spin_unlock_irqrestore(&itc_sync_lock, flags);
332 
333 #if DEBUG_ITC_SYNC
334 	for (i = 0; i < NUM_ROUNDS; ++i)
335 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
336 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
337 #endif
338 
339 	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
340 	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
341 }
342 
343 /*
344  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
345  */
346 static inline void smp_setup_percpu_timer(void)
347 {
348 }
349 
350 static void
351 smp_callin (void)
352 {
353 	int cpuid, phys_id, itc_master;
354 	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
355 	extern void ia64_init_itm(void);
356 	extern volatile int time_keeper_id;
357 
358 #ifdef CONFIG_PERFMON
359 	extern void pfm_init_percpu(void);
360 #endif
361 
362 	cpuid = smp_processor_id();
363 	phys_id = hard_smp_processor_id();
364 	itc_master = time_keeper_id;
365 
366 	if (cpu_online(cpuid)) {
367 		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
368 		       phys_id, cpuid);
369 		BUG();
370 	}
371 
372 	fix_b0_for_bsp();
373 
374 	/*
375 	 * numa_node_id() works after this.
376 	 */
377 	set_numa_node(cpu_to_node_map[cpuid]);
378 	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
379 
380 	spin_lock(&vector_lock);
381 	/* Setup the per cpu irq handling data structures */
382 	__setup_vector_irq(cpuid);
383 	notify_cpu_starting(cpuid);
384 	set_cpu_online(cpuid, true);
385 	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
386 	spin_unlock(&vector_lock);
387 
388 	smp_setup_percpu_timer();
389 
390 	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
391 
392 #ifdef CONFIG_PERFMON
393 	pfm_init_percpu();
394 #endif
395 
396 	local_irq_enable();
397 
398 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
399 		/*
400 		 * Synchronize the ITC with the BP.  Need to do this after irqs are
401 		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
402 		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
403 		 * local_bh_enable(), which bugs out if irqs are not enabled...
404 		 */
405 		Dprintk("Going to syncup ITC with ITC Master.\n");
406 		ia64_sync_itc(itc_master);
407 	}
408 
409 	/*
410 	 * Get our bogomips.
411 	 */
412 	ia64_init_itm();
413 
414 	/*
415 	 * Delay calibration can be skipped if new processor is identical to the
416 	 * previous processor.
417 	 */
418 	last_cpuinfo = cpu_data(cpuid - 1);
419 	this_cpuinfo = local_cpu_data;
420 	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
421 	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
422 	    last_cpuinfo->features != this_cpuinfo->features ||
423 	    last_cpuinfo->revision != this_cpuinfo->revision ||
424 	    last_cpuinfo->family != this_cpuinfo->family ||
425 	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
426 	    last_cpuinfo->model != this_cpuinfo->model)
427 		calibrate_delay();
428 	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
429 
430 	/*
431 	 * Allow the master to continue.
432 	 */
433 	cpumask_set_cpu(cpuid, &cpu_callin_map);
434 	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
435 }
436 
437 
438 /*
439  * Activate a secondary processor.  head.S calls this.
440  */
441 int
442 start_secondary (void *unused)
443 {
444 	/* Early console may use I/O ports */
445 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
446 #ifndef CONFIG_PRINTK_TIME
447 	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
448 #endif
449 	efi_map_pal_code();
450 	cpu_init();
451 	preempt_disable();
452 	smp_callin();
453 
454 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
455 	return 0;
456 }
457 
458 static int
459 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
460 {
461 	int timeout;
462 
463 	task_for_booting_cpu = idle;
464 	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
465 
466 	set_brendez_area(cpu);
467 	ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
468 
469 	/*
470 	 * Wait 10s total for the AP to start
471 	 */
472 	Dprintk("Waiting on callin_map ...");
473 	for (timeout = 0; timeout < 100000; timeout++) {
474 		if (cpumask_test_cpu(cpu, &cpu_callin_map))
475 			break;  /* It has booted */
476 		barrier(); /* Make sure we re-read cpu_callin_map */
477 		udelay(100);
478 	}
479 	Dprintk("\n");
480 
481 	if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
482 		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
483 		ia64_cpu_to_sapicid[cpu] = -1;
484 		set_cpu_online(cpu, false);  /* was set in smp_callin() */
485 		return -EINVAL;
486 	}
487 	return 0;
488 }
489 
490 static int __init
491 decay (char *str)
492 {
493 	int ticks;
494 	get_option (&str, &ticks);
495 	return 1;
496 }
497 
498 __setup("decay=", decay);
499 
500 /*
501  * Initialize the logical CPU number to SAPICID mapping
502  */
503 void __init
504 smp_build_cpu_map (void)
505 {
506 	int sapicid, cpu, i;
507 	int boot_cpu_id = hard_smp_processor_id();
508 
509 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
510 		ia64_cpu_to_sapicid[cpu] = -1;
511 	}
512 
513 	ia64_cpu_to_sapicid[0] = boot_cpu_id;
514 	init_cpu_present(cpumask_of(0));
515 	set_cpu_possible(0, true);
516 	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
517 		sapicid = smp_boot_data.cpu_phys_id[i];
518 		if (sapicid == boot_cpu_id)
519 			continue;
520 		set_cpu_present(cpu, true);
521 		set_cpu_possible(cpu, true);
522 		ia64_cpu_to_sapicid[cpu] = sapicid;
523 		cpu++;
524 	}
525 }
526 
527 /*
528  * Cycle through the APs sending Wakeup IPIs to boot each.
529  */
530 void __init
531 smp_prepare_cpus (unsigned int max_cpus)
532 {
533 	int boot_cpu_id = hard_smp_processor_id();
534 
535 	/*
536 	 * Initialize the per-CPU profiling counter/multiplier
537 	 */
538 
539 	smp_setup_percpu_timer();
540 
541 	cpumask_set_cpu(0, &cpu_callin_map);
542 
543 	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
544 	ia64_cpu_to_sapicid[0] = boot_cpu_id;
545 
546 	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
547 
548 	current_thread_info()->cpu = 0;
549 
550 	/*
551 	 * If SMP should be disabled, then really disable it!
552 	 */
553 	if (!max_cpus) {
554 		printk(KERN_INFO "SMP mode deactivated.\n");
555 		init_cpu_online(cpumask_of(0));
556 		init_cpu_present(cpumask_of(0));
557 		init_cpu_possible(cpumask_of(0));
558 		return;
559 	}
560 }
561 
562 void smp_prepare_boot_cpu(void)
563 {
564 	set_cpu_online(smp_processor_id(), true);
565 	cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
566 	set_numa_node(cpu_to_node_map[smp_processor_id()]);
567 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
568 }
569 
570 #ifdef CONFIG_HOTPLUG_CPU
571 static inline void
572 clear_cpu_sibling_map(int cpu)
573 {
574 	int i;
575 
576 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
577 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
578 	for_each_cpu(i, &cpu_core_map[cpu])
579 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
580 
581 	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
582 }
583 
584 static void
585 remove_siblinginfo(int cpu)
586 {
587 	int last = 0;
588 
589 	if (cpu_data(cpu)->threads_per_core == 1 &&
590 	    cpu_data(cpu)->cores_per_socket == 1) {
591 		cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
592 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
593 		return;
594 	}
595 
596 	last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
597 
598 	/* remove it from all sibling map's */
599 	clear_cpu_sibling_map(cpu);
600 }
601 
602 extern void fixup_irqs(void);
603 
604 int migrate_platform_irqs(unsigned int cpu)
605 {
606 	int new_cpei_cpu;
607 	struct irq_data *data = NULL;
608 	const struct cpumask *mask;
609 	int 		retval = 0;
610 
611 	/*
612 	 * dont permit CPEI target to removed.
613 	 */
614 	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
615 		printk ("CPU (%d) is CPEI Target\n", cpu);
616 		if (can_cpei_retarget()) {
617 			/*
618 			 * Now re-target the CPEI to a different processor
619 			 */
620 			new_cpei_cpu = cpumask_any(cpu_online_mask);
621 			mask = cpumask_of(new_cpei_cpu);
622 			set_cpei_target_cpu(new_cpei_cpu);
623 			data = irq_get_irq_data(ia64_cpe_irq);
624 			/*
625 			 * Switch for now, immediately, we need to do fake intr
626 			 * as other interrupts, but need to study CPEI behaviour with
627 			 * polling before making changes.
628 			 */
629 			if (data && data->chip) {
630 				data->chip->irq_disable(data);
631 				data->chip->irq_set_affinity(data, mask, false);
632 				data->chip->irq_enable(data);
633 				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
634 			}
635 		}
636 		if (!data) {
637 			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
638 			retval = -EBUSY;
639 		}
640 	}
641 	return retval;
642 }
643 
644 /* must be called with cpucontrol mutex held */
645 int __cpu_disable(void)
646 {
647 	int cpu = smp_processor_id();
648 
649 	/*
650 	 * dont permit boot processor for now
651 	 */
652 	if (cpu == 0 && !bsp_remove_ok) {
653 		printk ("Your platform does not support removal of BSP\n");
654 		return (-EBUSY);
655 	}
656 
657 	set_cpu_online(cpu, false);
658 
659 	if (migrate_platform_irqs(cpu)) {
660 		set_cpu_online(cpu, true);
661 		return -EBUSY;
662 	}
663 
664 	remove_siblinginfo(cpu);
665 	fixup_irqs();
666 	local_flush_tlb_all();
667 	cpumask_clear_cpu(cpu, &cpu_callin_map);
668 	return 0;
669 }
670 
671 void __cpu_die(unsigned int cpu)
672 {
673 	unsigned int i;
674 
675 	for (i = 0; i < 100; i++) {
676 		/* They ack this in play_dead by setting CPU_DEAD */
677 		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
678 		{
679 			printk ("CPU %d is now offline\n", cpu);
680 			return;
681 		}
682 		msleep(100);
683 	}
684  	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
685 }
686 #endif /* CONFIG_HOTPLUG_CPU */
687 
688 void
689 smp_cpus_done (unsigned int dummy)
690 {
691 	int cpu;
692 	unsigned long bogosum = 0;
693 
694 	/*
695 	 * Allow the user to impress friends.
696 	 */
697 
698 	for_each_online_cpu(cpu) {
699 		bogosum += cpu_data(cpu)->loops_per_jiffy;
700 	}
701 
702 	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
703 	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
704 }
705 
706 static inline void set_cpu_sibling_map(int cpu)
707 {
708 	int i;
709 
710 	for_each_online_cpu(i) {
711 		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
712 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
713 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
714 			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
715 				cpumask_set_cpu(i,
716 						&per_cpu(cpu_sibling_map, cpu));
717 				cpumask_set_cpu(cpu,
718 						&per_cpu(cpu_sibling_map, i));
719 			}
720 		}
721 	}
722 }
723 
724 int
725 __cpu_up(unsigned int cpu, struct task_struct *tidle)
726 {
727 	int ret;
728 	int sapicid;
729 
730 	sapicid = ia64_cpu_to_sapicid[cpu];
731 	if (sapicid == -1)
732 		return -EINVAL;
733 
734 	/*
735 	 * Already booted cpu? not valid anymore since we dont
736 	 * do idle loop tightspin anymore.
737 	 */
738 	if (cpumask_test_cpu(cpu, &cpu_callin_map))
739 		return -EINVAL;
740 
741 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
742 	/* Processor goes to start_secondary(), sets online flag */
743 	ret = do_boot_cpu(sapicid, cpu, tidle);
744 	if (ret < 0)
745 		return ret;
746 
747 	if (cpu_data(cpu)->threads_per_core == 1 &&
748 	    cpu_data(cpu)->cores_per_socket == 1) {
749 		cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
750 		cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
751 		return 0;
752 	}
753 
754 	set_cpu_sibling_map(cpu);
755 
756 	return 0;
757 }
758 
759 /*
760  * Assume that CPUs have been discovered by some platform-dependent interface.  For
761  * SoftSDV/Lion, that would be ACPI.
762  *
763  * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
764  */
765 void __init
766 init_smp_config(void)
767 {
768 	struct fptr {
769 		unsigned long fp;
770 		unsigned long gp;
771 	} *ap_startup;
772 	long sal_ret;
773 
774 	/* Tell SAL where to drop the APs.  */
775 	ap_startup = (struct fptr *) start_ap;
776 	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
777 				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
778 	if (sal_ret < 0)
779 		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
780 		       ia64_sal_strerror(sal_ret));
781 }
782 
783 /*
784  * identify_siblings(cpu) gets called from identify_cpu. This populates the
785  * information related to logical execution units in per_cpu_data structure.
786  */
787 void identify_siblings(struct cpuinfo_ia64 *c)
788 {
789 	long status;
790 	u16 pltid;
791 	pal_logical_to_physical_t info;
792 
793 	status = ia64_pal_logical_to_phys(-1, &info);
794 	if (status != PAL_STATUS_SUCCESS) {
795 		if (status != PAL_STATUS_UNIMPLEMENTED) {
796 			printk(KERN_ERR
797 				"ia64_pal_logical_to_phys failed with %ld\n",
798 				status);
799 			return;
800 		}
801 
802 		info.overview_ppid = 0;
803 		info.overview_cpp  = 1;
804 		info.overview_tpc  = 1;
805 	}
806 
807 	status = ia64_sal_physical_id_info(&pltid);
808 	if (status != PAL_STATUS_SUCCESS) {
809 		if (status != PAL_STATUS_UNIMPLEMENTED)
810 			printk(KERN_ERR
811 				"ia64_sal_pltid failed with %ld\n",
812 				status);
813 		return;
814 	}
815 
816 	c->socket_id =  (pltid << 8) | info.overview_ppid;
817 
818 	if (info.overview_cpp == 1 && info.overview_tpc == 1)
819 		return;
820 
821 	c->cores_per_socket = info.overview_cpp;
822 	c->threads_per_core = info.overview_tpc;
823 	c->num_log = info.overview_num_log;
824 
825 	c->core_id = info.log1_cid;
826 	c->thread_id = info.log1_tid;
827 }
828 
829 /*
830  * returns non zero, if multi-threading is enabled
831  * on at least one physical package. Due to hotplug cpu
832  * and (maxcpus=), all threads may not necessarily be enabled
833  * even though the processor supports multi-threading.
834  */
835 int is_multithreading_enabled(void)
836 {
837 	int i, j;
838 
839 	for_each_present_cpu(i) {
840 		for_each_present_cpu(j) {
841 			if (j == i)
842 				continue;
843 			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
844 				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
845 					return 1;
846 			}
847 		}
848 	}
849 	return 0;
850 }
851 EXPORT_SYMBOL_GPL(is_multithreading_enabled);
852