1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP boot-related support 4 * 5 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * Copyright (C) 2001, 2004-2005 Intel Corp 8 * Rohit Seth <rohit.seth@intel.com> 9 * Suresh Siddha <suresh.b.siddha@intel.com> 10 * Gordon Jin <gordon.jin@intel.com> 11 * Ashok Raj <ashok.raj@intel.com> 12 * 13 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here. 14 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code. 15 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence. 16 * smp_boot_cpus()/smp_commence() is replaced by 17 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done(). 18 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 19 * 04/12/26 Jin Gordon <gordon.jin@intel.com> 20 * 04/12/26 Rohit Seth <rohit.seth@intel.com> 21 * Add multi-threading and multi-core detection 22 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com> 23 * Setup cpu_sibling_map and cpu_core_map 24 */ 25 26 #include <linux/module.h> 27 #include <linux/acpi.h> 28 #include <linux/memblock.h> 29 #include <linux/cpu.h> 30 #include <linux/delay.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/irq.h> 34 #include <linux/kernel.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/mm.h> 37 #include <linux/notifier.h> 38 #include <linux/smp.h> 39 #include <linux/spinlock.h> 40 #include <linux/efi.h> 41 #include <linux/percpu.h> 42 #include <linux/bitops.h> 43 44 #include <linux/atomic.h> 45 #include <asm/cache.h> 46 #include <asm/current.h> 47 #include <asm/delay.h> 48 #include <asm/io.h> 49 #include <asm/irq.h> 50 #include <asm/mca.h> 51 #include <asm/page.h> 52 #include <asm/processor.h> 53 #include <asm/ptrace.h> 54 #include <asm/sal.h> 55 #include <asm/tlbflush.h> 56 #include <asm/unistd.h> 57 58 #define SMP_DEBUG 0 59 60 #if SMP_DEBUG 61 #define Dprintk(x...) printk(x) 62 #else 63 #define Dprintk(x...) 64 #endif 65 66 #ifdef CONFIG_HOTPLUG_CPU 67 #ifdef CONFIG_PERMIT_BSP_REMOVE 68 #define bsp_remove_ok 1 69 #else 70 #define bsp_remove_ok 0 71 #endif 72 73 /* 74 * Global array allocated for NR_CPUS at boot time 75 */ 76 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS]; 77 78 /* 79 * start_ap in head.S uses this to store current booting cpu 80 * info. 81 */ 82 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0]; 83 84 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]); 85 86 #else 87 #define set_brendez_area(x) 88 #endif 89 90 91 /* 92 * ITC synchronization related stuff: 93 */ 94 #define MASTER (0) 95 #define SLAVE (SMP_CACHE_BYTES/8) 96 97 #define NUM_ROUNDS 64 /* magic value */ 98 #define NUM_ITERS 5 /* likewise */ 99 100 static DEFINE_SPINLOCK(itc_sync_lock); 101 static volatile unsigned long go[SLAVE + 1]; 102 103 #define DEBUG_ITC_SYNC 0 104 105 extern void start_ap (void); 106 extern unsigned long ia64_iobase; 107 108 struct task_struct *task_for_booting_cpu; 109 110 /* 111 * State for each CPU 112 */ 113 DEFINE_PER_CPU(int, cpu_state); 114 115 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned; 116 EXPORT_SYMBOL(cpu_core_map); 117 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map); 118 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 119 120 int smp_num_siblings = 1; 121 122 /* which logical CPU number maps to which CPU (physical APIC ID) */ 123 volatile int ia64_cpu_to_sapicid[NR_CPUS]; 124 EXPORT_SYMBOL(ia64_cpu_to_sapicid); 125 126 static cpumask_t cpu_callin_map; 127 128 struct smp_boot_data smp_boot_data __initdata; 129 130 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */ 131 132 char __initdata no_int_routing; 133 134 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */ 135 136 #ifdef CONFIG_FORCE_CPEI_RETARGET 137 #define CPEI_OVERRIDE_DEFAULT (1) 138 #else 139 #define CPEI_OVERRIDE_DEFAULT (0) 140 #endif 141 142 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT; 143 144 static int __init 145 cmdl_force_cpei(char *str) 146 { 147 int value=0; 148 149 get_option (&str, &value); 150 force_cpei_retarget = value; 151 152 return 1; 153 } 154 155 __setup("force_cpei=", cmdl_force_cpei); 156 157 static int __init 158 nointroute (char *str) 159 { 160 no_int_routing = 1; 161 printk ("no_int_routing on\n"); 162 return 1; 163 } 164 165 __setup("nointroute", nointroute); 166 167 static void fix_b0_for_bsp(void) 168 { 169 #ifdef CONFIG_HOTPLUG_CPU 170 int cpuid; 171 static int fix_bsp_b0 = 1; 172 173 cpuid = smp_processor_id(); 174 175 /* 176 * Cache the b0 value on the first AP that comes up 177 */ 178 if (!(fix_bsp_b0 && cpuid)) 179 return; 180 181 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0]; 182 printk ("Fixed BSP b0 value from CPU %d\n", cpuid); 183 184 fix_bsp_b0 = 0; 185 #endif 186 } 187 188 void 189 sync_master (void *arg) 190 { 191 unsigned long flags, i; 192 193 go[MASTER] = 0; 194 195 local_irq_save(flags); 196 { 197 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) { 198 while (!go[MASTER]) 199 cpu_relax(); 200 go[MASTER] = 0; 201 go[SLAVE] = ia64_get_itc(); 202 } 203 } 204 local_irq_restore(flags); 205 } 206 207 /* 208 * Return the number of cycles by which our itc differs from the itc on the master 209 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master, 210 * negative that it is behind. 211 */ 212 static inline long 213 get_delta (long *rt, long *master) 214 { 215 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 216 unsigned long tcenter, t0, t1, tm; 217 long i; 218 219 for (i = 0; i < NUM_ITERS; ++i) { 220 t0 = ia64_get_itc(); 221 go[MASTER] = 1; 222 while (!(tm = go[SLAVE])) 223 cpu_relax(); 224 go[SLAVE] = 0; 225 t1 = ia64_get_itc(); 226 227 if (t1 - t0 < best_t1 - best_t0) 228 best_t0 = t0, best_t1 = t1, best_tm = tm; 229 } 230 231 *rt = best_t1 - best_t0; 232 *master = best_tm - best_t0; 233 234 /* average best_t0 and best_t1 without overflow: */ 235 tcenter = (best_t0/2 + best_t1/2); 236 if (best_t0 % 2 + best_t1 % 2 == 2) 237 ++tcenter; 238 return tcenter - best_tm; 239 } 240 241 /* 242 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU 243 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of 244 * unaccounted-for errors (such as getting a machine check in the middle of a calibration 245 * step). The basic idea is for the slave to ask the master what itc value it has and to 246 * read its own itc before and after the master responds. Each iteration gives us three 247 * timestamps: 248 * 249 * slave master 250 * 251 * t0 ---\ 252 * ---\ 253 * ---> 254 * tm 255 * /--- 256 * /--- 257 * t1 <--- 258 * 259 * 260 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0 261 * and t1. If we achieve this, the clocks are synchronized provided the interconnect 262 * between the slave and the master is symmetric. Even if the interconnect were 263 * asymmetric, we would still know that the synchronization error is smaller than the 264 * roundtrip latency (t0 - t1). 265 * 266 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to 267 * within one or two cycles. However, we can only *guarantee* that the synchronization is 268 * accurate to within a round-trip time, which is typically in the range of several 269 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually 270 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better 271 * than half a micro second or so. 272 */ 273 void 274 ia64_sync_itc (unsigned int master) 275 { 276 long i, delta, adj, adjust_latency = 0, done = 0; 277 unsigned long flags, rt, master_time_stamp, bound; 278 #if DEBUG_ITC_SYNC 279 struct { 280 long rt; /* roundtrip time */ 281 long master; /* master's timestamp */ 282 long diff; /* difference between midpoint and master's timestamp */ 283 long lat; /* estimate of itc adjustment latency */ 284 } t[NUM_ROUNDS]; 285 #endif 286 287 /* 288 * Make sure local timer ticks are disabled while we sync. If 289 * they were enabled, we'd have to worry about nasty issues 290 * like setting the ITC ahead of (or a long time before) the 291 * next scheduled tick. 292 */ 293 BUG_ON((ia64_get_itv() & (1 << 16)) == 0); 294 295 go[MASTER] = 1; 296 297 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) { 298 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master); 299 return; 300 } 301 302 while (go[MASTER]) 303 cpu_relax(); /* wait for master to be ready */ 304 305 spin_lock_irqsave(&itc_sync_lock, flags); 306 { 307 for (i = 0; i < NUM_ROUNDS; ++i) { 308 delta = get_delta(&rt, &master_time_stamp); 309 if (delta == 0) { 310 done = 1; /* let's lock on to this... */ 311 bound = rt; 312 } 313 314 if (!done) { 315 if (i > 0) { 316 adjust_latency += -delta; 317 adj = -delta + adjust_latency/4; 318 } else 319 adj = -delta; 320 321 ia64_set_itc(ia64_get_itc() + adj); 322 } 323 #if DEBUG_ITC_SYNC 324 t[i].rt = rt; 325 t[i].master = master_time_stamp; 326 t[i].diff = delta; 327 t[i].lat = adjust_latency/4; 328 #endif 329 } 330 } 331 spin_unlock_irqrestore(&itc_sync_lock, flags); 332 333 #if DEBUG_ITC_SYNC 334 for (i = 0; i < NUM_ROUNDS; ++i) 335 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 336 t[i].rt, t[i].master, t[i].diff, t[i].lat); 337 #endif 338 339 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, " 340 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt); 341 } 342 343 /* 344 * Ideally sets up per-cpu profiling hooks. Doesn't do much now... 345 */ 346 static inline void smp_setup_percpu_timer(void) 347 { 348 } 349 350 static void 351 smp_callin (void) 352 { 353 int cpuid, phys_id, itc_master; 354 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo; 355 extern void ia64_init_itm(void); 356 extern volatile int time_keeper_id; 357 358 #ifdef CONFIG_PERFMON 359 extern void pfm_init_percpu(void); 360 #endif 361 362 cpuid = smp_processor_id(); 363 phys_id = hard_smp_processor_id(); 364 itc_master = time_keeper_id; 365 366 if (cpu_online(cpuid)) { 367 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n", 368 phys_id, cpuid); 369 BUG(); 370 } 371 372 fix_b0_for_bsp(); 373 374 /* 375 * numa_node_id() works after this. 376 */ 377 set_numa_node(cpu_to_node_map[cpuid]); 378 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid])); 379 380 spin_lock(&vector_lock); 381 /* Setup the per cpu irq handling data structures */ 382 __setup_vector_irq(cpuid); 383 notify_cpu_starting(cpuid); 384 set_cpu_online(cpuid, true); 385 per_cpu(cpu_state, cpuid) = CPU_ONLINE; 386 spin_unlock(&vector_lock); 387 388 smp_setup_percpu_timer(); 389 390 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */ 391 392 #ifdef CONFIG_PERFMON 393 pfm_init_percpu(); 394 #endif 395 396 local_irq_enable(); 397 398 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { 399 /* 400 * Synchronize the ITC with the BP. Need to do this after irqs are 401 * enabled because ia64_sync_itc() calls smp_call_function_single(), which 402 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls 403 * local_bh_enable(), which bugs out if irqs are not enabled... 404 */ 405 Dprintk("Going to syncup ITC with ITC Master.\n"); 406 ia64_sync_itc(itc_master); 407 } 408 409 /* 410 * Get our bogomips. 411 */ 412 ia64_init_itm(); 413 414 /* 415 * Delay calibration can be skipped if new processor is identical to the 416 * previous processor. 417 */ 418 last_cpuinfo = cpu_data(cpuid - 1); 419 this_cpuinfo = local_cpu_data; 420 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq || 421 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq || 422 last_cpuinfo->features != this_cpuinfo->features || 423 last_cpuinfo->revision != this_cpuinfo->revision || 424 last_cpuinfo->family != this_cpuinfo->family || 425 last_cpuinfo->archrev != this_cpuinfo->archrev || 426 last_cpuinfo->model != this_cpuinfo->model) 427 calibrate_delay(); 428 local_cpu_data->loops_per_jiffy = loops_per_jiffy; 429 430 /* 431 * Allow the master to continue. 432 */ 433 cpumask_set_cpu(cpuid, &cpu_callin_map); 434 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid); 435 } 436 437 438 /* 439 * Activate a secondary processor. head.S calls this. 440 */ 441 int 442 start_secondary (void *unused) 443 { 444 /* Early console may use I/O ports */ 445 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); 446 #ifndef CONFIG_PRINTK_TIME 447 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id()); 448 #endif 449 efi_map_pal_code(); 450 cpu_init(); 451 preempt_disable(); 452 smp_callin(); 453 454 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 455 return 0; 456 } 457 458 static int 459 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle) 460 { 461 int timeout; 462 463 task_for_booting_cpu = idle; 464 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid); 465 466 set_brendez_area(cpu); 467 ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0); 468 469 /* 470 * Wait 10s total for the AP to start 471 */ 472 Dprintk("Waiting on callin_map ..."); 473 for (timeout = 0; timeout < 100000; timeout++) { 474 if (cpumask_test_cpu(cpu, &cpu_callin_map)) 475 break; /* It has booted */ 476 barrier(); /* Make sure we re-read cpu_callin_map */ 477 udelay(100); 478 } 479 Dprintk("\n"); 480 481 if (!cpumask_test_cpu(cpu, &cpu_callin_map)) { 482 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid); 483 ia64_cpu_to_sapicid[cpu] = -1; 484 set_cpu_online(cpu, false); /* was set in smp_callin() */ 485 return -EINVAL; 486 } 487 return 0; 488 } 489 490 static int __init 491 decay (char *str) 492 { 493 int ticks; 494 get_option (&str, &ticks); 495 return 1; 496 } 497 498 __setup("decay=", decay); 499 500 /* 501 * Initialize the logical CPU number to SAPICID mapping 502 */ 503 void __init 504 smp_build_cpu_map (void) 505 { 506 int sapicid, cpu, i; 507 int boot_cpu_id = hard_smp_processor_id(); 508 509 for (cpu = 0; cpu < NR_CPUS; cpu++) { 510 ia64_cpu_to_sapicid[cpu] = -1; 511 } 512 513 ia64_cpu_to_sapicid[0] = boot_cpu_id; 514 init_cpu_present(cpumask_of(0)); 515 set_cpu_possible(0, true); 516 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) { 517 sapicid = smp_boot_data.cpu_phys_id[i]; 518 if (sapicid == boot_cpu_id) 519 continue; 520 set_cpu_present(cpu, true); 521 set_cpu_possible(cpu, true); 522 ia64_cpu_to_sapicid[cpu] = sapicid; 523 cpu++; 524 } 525 } 526 527 /* 528 * Cycle through the APs sending Wakeup IPIs to boot each. 529 */ 530 void __init 531 smp_prepare_cpus (unsigned int max_cpus) 532 { 533 int boot_cpu_id = hard_smp_processor_id(); 534 535 /* 536 * Initialize the per-CPU profiling counter/multiplier 537 */ 538 539 smp_setup_percpu_timer(); 540 541 cpumask_set_cpu(0, &cpu_callin_map); 542 543 local_cpu_data->loops_per_jiffy = loops_per_jiffy; 544 ia64_cpu_to_sapicid[0] = boot_cpu_id; 545 546 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id); 547 548 current_thread_info()->cpu = 0; 549 550 /* 551 * If SMP should be disabled, then really disable it! 552 */ 553 if (!max_cpus) { 554 printk(KERN_INFO "SMP mode deactivated.\n"); 555 init_cpu_online(cpumask_of(0)); 556 init_cpu_present(cpumask_of(0)); 557 init_cpu_possible(cpumask_of(0)); 558 return; 559 } 560 } 561 562 void smp_prepare_boot_cpu(void) 563 { 564 set_cpu_online(smp_processor_id(), true); 565 cpumask_set_cpu(smp_processor_id(), &cpu_callin_map); 566 set_numa_node(cpu_to_node_map[smp_processor_id()]); 567 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 568 } 569 570 #ifdef CONFIG_HOTPLUG_CPU 571 static inline void 572 clear_cpu_sibling_map(int cpu) 573 { 574 int i; 575 576 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) 577 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); 578 for_each_cpu(i, &cpu_core_map[cpu]) 579 cpumask_clear_cpu(cpu, &cpu_core_map[i]); 580 581 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE; 582 } 583 584 static void 585 remove_siblinginfo(int cpu) 586 { 587 int last = 0; 588 589 if (cpu_data(cpu)->threads_per_core == 1 && 590 cpu_data(cpu)->cores_per_socket == 1) { 591 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]); 592 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu)); 593 return; 594 } 595 596 last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0); 597 598 /* remove it from all sibling map's */ 599 clear_cpu_sibling_map(cpu); 600 } 601 602 extern void fixup_irqs(void); 603 604 int migrate_platform_irqs(unsigned int cpu) 605 { 606 int new_cpei_cpu; 607 struct irq_data *data = NULL; 608 const struct cpumask *mask; 609 int retval = 0; 610 611 /* 612 * dont permit CPEI target to removed. 613 */ 614 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) { 615 printk ("CPU (%d) is CPEI Target\n", cpu); 616 if (can_cpei_retarget()) { 617 /* 618 * Now re-target the CPEI to a different processor 619 */ 620 new_cpei_cpu = cpumask_any(cpu_online_mask); 621 mask = cpumask_of(new_cpei_cpu); 622 set_cpei_target_cpu(new_cpei_cpu); 623 data = irq_get_irq_data(ia64_cpe_irq); 624 /* 625 * Switch for now, immediately, we need to do fake intr 626 * as other interrupts, but need to study CPEI behaviour with 627 * polling before making changes. 628 */ 629 if (data && data->chip) { 630 data->chip->irq_disable(data); 631 data->chip->irq_set_affinity(data, mask, false); 632 data->chip->irq_enable(data); 633 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu); 634 } 635 } 636 if (!data) { 637 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu); 638 retval = -EBUSY; 639 } 640 } 641 return retval; 642 } 643 644 /* must be called with cpucontrol mutex held */ 645 int __cpu_disable(void) 646 { 647 int cpu = smp_processor_id(); 648 649 /* 650 * dont permit boot processor for now 651 */ 652 if (cpu == 0 && !bsp_remove_ok) { 653 printk ("Your platform does not support removal of BSP\n"); 654 return (-EBUSY); 655 } 656 657 set_cpu_online(cpu, false); 658 659 if (migrate_platform_irqs(cpu)) { 660 set_cpu_online(cpu, true); 661 return -EBUSY; 662 } 663 664 remove_siblinginfo(cpu); 665 fixup_irqs(); 666 local_flush_tlb_all(); 667 cpumask_clear_cpu(cpu, &cpu_callin_map); 668 return 0; 669 } 670 671 void __cpu_die(unsigned int cpu) 672 { 673 unsigned int i; 674 675 for (i = 0; i < 100; i++) { 676 /* They ack this in play_dead by setting CPU_DEAD */ 677 if (per_cpu(cpu_state, cpu) == CPU_DEAD) 678 { 679 printk ("CPU %d is now offline\n", cpu); 680 return; 681 } 682 msleep(100); 683 } 684 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 685 } 686 #endif /* CONFIG_HOTPLUG_CPU */ 687 688 void 689 smp_cpus_done (unsigned int dummy) 690 { 691 int cpu; 692 unsigned long bogosum = 0; 693 694 /* 695 * Allow the user to impress friends. 696 */ 697 698 for_each_online_cpu(cpu) { 699 bogosum += cpu_data(cpu)->loops_per_jiffy; 700 } 701 702 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", 703 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); 704 } 705 706 static inline void set_cpu_sibling_map(int cpu) 707 { 708 int i; 709 710 for_each_online_cpu(i) { 711 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) { 712 cpumask_set_cpu(i, &cpu_core_map[cpu]); 713 cpumask_set_cpu(cpu, &cpu_core_map[i]); 714 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) { 715 cpumask_set_cpu(i, 716 &per_cpu(cpu_sibling_map, cpu)); 717 cpumask_set_cpu(cpu, 718 &per_cpu(cpu_sibling_map, i)); 719 } 720 } 721 } 722 } 723 724 int 725 __cpu_up(unsigned int cpu, struct task_struct *tidle) 726 { 727 int ret; 728 int sapicid; 729 730 sapicid = ia64_cpu_to_sapicid[cpu]; 731 if (sapicid == -1) 732 return -EINVAL; 733 734 /* 735 * Already booted cpu? not valid anymore since we dont 736 * do idle loop tightspin anymore. 737 */ 738 if (cpumask_test_cpu(cpu, &cpu_callin_map)) 739 return -EINVAL; 740 741 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 742 /* Processor goes to start_secondary(), sets online flag */ 743 ret = do_boot_cpu(sapicid, cpu, tidle); 744 if (ret < 0) 745 return ret; 746 747 if (cpu_data(cpu)->threads_per_core == 1 && 748 cpu_data(cpu)->cores_per_socket == 1) { 749 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu)); 750 cpumask_set_cpu(cpu, &cpu_core_map[cpu]); 751 return 0; 752 } 753 754 set_cpu_sibling_map(cpu); 755 756 return 0; 757 } 758 759 /* 760 * Assume that CPUs have been discovered by some platform-dependent interface. For 761 * SoftSDV/Lion, that would be ACPI. 762 * 763 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP(). 764 */ 765 void __init 766 init_smp_config(void) 767 { 768 struct fptr { 769 unsigned long fp; 770 unsigned long gp; 771 } *ap_startup; 772 long sal_ret; 773 774 /* Tell SAL where to drop the APs. */ 775 ap_startup = (struct fptr *) start_ap; 776 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ, 777 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0); 778 if (sal_ret < 0) 779 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n", 780 ia64_sal_strerror(sal_ret)); 781 } 782 783 /* 784 * identify_siblings(cpu) gets called from identify_cpu. This populates the 785 * information related to logical execution units in per_cpu_data structure. 786 */ 787 void identify_siblings(struct cpuinfo_ia64 *c) 788 { 789 long status; 790 u16 pltid; 791 pal_logical_to_physical_t info; 792 793 status = ia64_pal_logical_to_phys(-1, &info); 794 if (status != PAL_STATUS_SUCCESS) { 795 if (status != PAL_STATUS_UNIMPLEMENTED) { 796 printk(KERN_ERR 797 "ia64_pal_logical_to_phys failed with %ld\n", 798 status); 799 return; 800 } 801 802 info.overview_ppid = 0; 803 info.overview_cpp = 1; 804 info.overview_tpc = 1; 805 } 806 807 status = ia64_sal_physical_id_info(&pltid); 808 if (status != PAL_STATUS_SUCCESS) { 809 if (status != PAL_STATUS_UNIMPLEMENTED) 810 printk(KERN_ERR 811 "ia64_sal_pltid failed with %ld\n", 812 status); 813 return; 814 } 815 816 c->socket_id = (pltid << 8) | info.overview_ppid; 817 818 if (info.overview_cpp == 1 && info.overview_tpc == 1) 819 return; 820 821 c->cores_per_socket = info.overview_cpp; 822 c->threads_per_core = info.overview_tpc; 823 c->num_log = info.overview_num_log; 824 825 c->core_id = info.log1_cid; 826 c->thread_id = info.log1_tid; 827 } 828 829 /* 830 * returns non zero, if multi-threading is enabled 831 * on at least one physical package. Due to hotplug cpu 832 * and (maxcpus=), all threads may not necessarily be enabled 833 * even though the processor supports multi-threading. 834 */ 835 int is_multithreading_enabled(void) 836 { 837 int i, j; 838 839 for_each_present_cpu(i) { 840 for_each_present_cpu(j) { 841 if (j == i) 842 continue; 843 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) { 844 if (cpu_data(j)->core_id == cpu_data(i)->core_id) 845 return 1; 846 } 847 } 848 } 849 return 0; 850 } 851 EXPORT_SYMBOL_GPL(is_multithreading_enabled); 852