1 /* 2 * SMP boot-related support 3 * 4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * Copyright (C) 2001, 2004-2005 Intel Corp 7 * Rohit Seth <rohit.seth@intel.com> 8 * Suresh Siddha <suresh.b.siddha@intel.com> 9 * Gordon Jin <gordon.jin@intel.com> 10 * Ashok Raj <ashok.raj@intel.com> 11 * 12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here. 13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code. 14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence. 15 * smp_boot_cpus()/smp_commence() is replaced by 16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done(). 17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 18 * 04/12/26 Jin Gordon <gordon.jin@intel.com> 19 * 04/12/26 Rohit Seth <rohit.seth@intel.com> 20 * Add multi-threading and multi-core detection 21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com> 22 * Setup cpu_sibling_map and cpu_core_map 23 */ 24 25 #include <linux/module.h> 26 #include <linux/acpi.h> 27 #include <linux/bootmem.h> 28 #include <linux/cpu.h> 29 #include <linux/delay.h> 30 #include <linux/init.h> 31 #include <linux/interrupt.h> 32 #include <linux/irq.h> 33 #include <linux/kernel.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/mm.h> 36 #include <linux/notifier.h> 37 #include <linux/smp.h> 38 #include <linux/spinlock.h> 39 #include <linux/efi.h> 40 #include <linux/percpu.h> 41 #include <linux/bitops.h> 42 43 #include <linux/atomic.h> 44 #include <asm/cache.h> 45 #include <asm/current.h> 46 #include <asm/delay.h> 47 #include <asm/io.h> 48 #include <asm/irq.h> 49 #include <asm/machvec.h> 50 #include <asm/mca.h> 51 #include <asm/page.h> 52 #include <asm/paravirt.h> 53 #include <asm/pgalloc.h> 54 #include <asm/pgtable.h> 55 #include <asm/processor.h> 56 #include <asm/ptrace.h> 57 #include <asm/sal.h> 58 #include <asm/system.h> 59 #include <asm/tlbflush.h> 60 #include <asm/unistd.h> 61 #include <asm/sn/arch.h> 62 63 #define SMP_DEBUG 0 64 65 #if SMP_DEBUG 66 #define Dprintk(x...) printk(x) 67 #else 68 #define Dprintk(x...) 69 #endif 70 71 #ifdef CONFIG_HOTPLUG_CPU 72 #ifdef CONFIG_PERMIT_BSP_REMOVE 73 #define bsp_remove_ok 1 74 #else 75 #define bsp_remove_ok 0 76 #endif 77 78 /* 79 * Store all idle threads, this can be reused instead of creating 80 * a new thread. Also avoids complicated thread destroy functionality 81 * for idle threads. 82 */ 83 struct task_struct *idle_thread_array[NR_CPUS]; 84 85 /* 86 * Global array allocated for NR_CPUS at boot time 87 */ 88 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS]; 89 90 /* 91 * start_ap in head.S uses this to store current booting cpu 92 * info. 93 */ 94 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0]; 95 96 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]); 97 98 #define get_idle_for_cpu(x) (idle_thread_array[(x)]) 99 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p)) 100 101 #else 102 103 #define get_idle_for_cpu(x) (NULL) 104 #define set_idle_for_cpu(x,p) 105 #define set_brendez_area(x) 106 #endif 107 108 109 /* 110 * ITC synchronization related stuff: 111 */ 112 #define MASTER (0) 113 #define SLAVE (SMP_CACHE_BYTES/8) 114 115 #define NUM_ROUNDS 64 /* magic value */ 116 #define NUM_ITERS 5 /* likewise */ 117 118 static DEFINE_SPINLOCK(itc_sync_lock); 119 static volatile unsigned long go[SLAVE + 1]; 120 121 #define DEBUG_ITC_SYNC 0 122 123 extern void start_ap (void); 124 extern unsigned long ia64_iobase; 125 126 struct task_struct *task_for_booting_cpu; 127 128 /* 129 * State for each CPU 130 */ 131 DEFINE_PER_CPU(int, cpu_state); 132 133 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned; 134 EXPORT_SYMBOL(cpu_core_map); 135 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map); 136 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 137 138 int smp_num_siblings = 1; 139 140 /* which logical CPU number maps to which CPU (physical APIC ID) */ 141 volatile int ia64_cpu_to_sapicid[NR_CPUS]; 142 EXPORT_SYMBOL(ia64_cpu_to_sapicid); 143 144 static volatile cpumask_t cpu_callin_map; 145 146 struct smp_boot_data smp_boot_data __initdata; 147 148 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */ 149 150 char __initdata no_int_routing; 151 152 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */ 153 154 #ifdef CONFIG_FORCE_CPEI_RETARGET 155 #define CPEI_OVERRIDE_DEFAULT (1) 156 #else 157 #define CPEI_OVERRIDE_DEFAULT (0) 158 #endif 159 160 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT; 161 162 static int __init 163 cmdl_force_cpei(char *str) 164 { 165 int value=0; 166 167 get_option (&str, &value); 168 force_cpei_retarget = value; 169 170 return 1; 171 } 172 173 __setup("force_cpei=", cmdl_force_cpei); 174 175 static int __init 176 nointroute (char *str) 177 { 178 no_int_routing = 1; 179 printk ("no_int_routing on\n"); 180 return 1; 181 } 182 183 __setup("nointroute", nointroute); 184 185 static void fix_b0_for_bsp(void) 186 { 187 #ifdef CONFIG_HOTPLUG_CPU 188 int cpuid; 189 static int fix_bsp_b0 = 1; 190 191 cpuid = smp_processor_id(); 192 193 /* 194 * Cache the b0 value on the first AP that comes up 195 */ 196 if (!(fix_bsp_b0 && cpuid)) 197 return; 198 199 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0]; 200 printk ("Fixed BSP b0 value from CPU %d\n", cpuid); 201 202 fix_bsp_b0 = 0; 203 #endif 204 } 205 206 void 207 sync_master (void *arg) 208 { 209 unsigned long flags, i; 210 211 go[MASTER] = 0; 212 213 local_irq_save(flags); 214 { 215 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) { 216 while (!go[MASTER]) 217 cpu_relax(); 218 go[MASTER] = 0; 219 go[SLAVE] = ia64_get_itc(); 220 } 221 } 222 local_irq_restore(flags); 223 } 224 225 /* 226 * Return the number of cycles by which our itc differs from the itc on the master 227 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master, 228 * negative that it is behind. 229 */ 230 static inline long 231 get_delta (long *rt, long *master) 232 { 233 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 234 unsigned long tcenter, t0, t1, tm; 235 long i; 236 237 for (i = 0; i < NUM_ITERS; ++i) { 238 t0 = ia64_get_itc(); 239 go[MASTER] = 1; 240 while (!(tm = go[SLAVE])) 241 cpu_relax(); 242 go[SLAVE] = 0; 243 t1 = ia64_get_itc(); 244 245 if (t1 - t0 < best_t1 - best_t0) 246 best_t0 = t0, best_t1 = t1, best_tm = tm; 247 } 248 249 *rt = best_t1 - best_t0; 250 *master = best_tm - best_t0; 251 252 /* average best_t0 and best_t1 without overflow: */ 253 tcenter = (best_t0/2 + best_t1/2); 254 if (best_t0 % 2 + best_t1 % 2 == 2) 255 ++tcenter; 256 return tcenter - best_tm; 257 } 258 259 /* 260 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU 261 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of 262 * unaccounted-for errors (such as getting a machine check in the middle of a calibration 263 * step). The basic idea is for the slave to ask the master what itc value it has and to 264 * read its own itc before and after the master responds. Each iteration gives us three 265 * timestamps: 266 * 267 * slave master 268 * 269 * t0 ---\ 270 * ---\ 271 * ---> 272 * tm 273 * /--- 274 * /--- 275 * t1 <--- 276 * 277 * 278 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0 279 * and t1. If we achieve this, the clocks are synchronized provided the interconnect 280 * between the slave and the master is symmetric. Even if the interconnect were 281 * asymmetric, we would still know that the synchronization error is smaller than the 282 * roundtrip latency (t0 - t1). 283 * 284 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to 285 * within one or two cycles. However, we can only *guarantee* that the synchronization is 286 * accurate to within a round-trip time, which is typically in the range of several 287 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually 288 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better 289 * than half a micro second or so. 290 */ 291 void 292 ia64_sync_itc (unsigned int master) 293 { 294 long i, delta, adj, adjust_latency = 0, done = 0; 295 unsigned long flags, rt, master_time_stamp, bound; 296 #if DEBUG_ITC_SYNC 297 struct { 298 long rt; /* roundtrip time */ 299 long master; /* master's timestamp */ 300 long diff; /* difference between midpoint and master's timestamp */ 301 long lat; /* estimate of itc adjustment latency */ 302 } t[NUM_ROUNDS]; 303 #endif 304 305 /* 306 * Make sure local timer ticks are disabled while we sync. If 307 * they were enabled, we'd have to worry about nasty issues 308 * like setting the ITC ahead of (or a long time before) the 309 * next scheduled tick. 310 */ 311 BUG_ON((ia64_get_itv() & (1 << 16)) == 0); 312 313 go[MASTER] = 1; 314 315 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) { 316 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master); 317 return; 318 } 319 320 while (go[MASTER]) 321 cpu_relax(); /* wait for master to be ready */ 322 323 spin_lock_irqsave(&itc_sync_lock, flags); 324 { 325 for (i = 0; i < NUM_ROUNDS; ++i) { 326 delta = get_delta(&rt, &master_time_stamp); 327 if (delta == 0) { 328 done = 1; /* let's lock on to this... */ 329 bound = rt; 330 } 331 332 if (!done) { 333 if (i > 0) { 334 adjust_latency += -delta; 335 adj = -delta + adjust_latency/4; 336 } else 337 adj = -delta; 338 339 ia64_set_itc(ia64_get_itc() + adj); 340 } 341 #if DEBUG_ITC_SYNC 342 t[i].rt = rt; 343 t[i].master = master_time_stamp; 344 t[i].diff = delta; 345 t[i].lat = adjust_latency/4; 346 #endif 347 } 348 } 349 spin_unlock_irqrestore(&itc_sync_lock, flags); 350 351 #if DEBUG_ITC_SYNC 352 for (i = 0; i < NUM_ROUNDS; ++i) 353 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 354 t[i].rt, t[i].master, t[i].diff, t[i].lat); 355 #endif 356 357 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, " 358 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt); 359 } 360 361 /* 362 * Ideally sets up per-cpu profiling hooks. Doesn't do much now... 363 */ 364 static inline void __devinit 365 smp_setup_percpu_timer (void) 366 { 367 } 368 369 static void __cpuinit 370 smp_callin (void) 371 { 372 int cpuid, phys_id, itc_master; 373 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo; 374 extern void ia64_init_itm(void); 375 extern volatile int time_keeper_id; 376 377 #ifdef CONFIG_PERFMON 378 extern void pfm_init_percpu(void); 379 #endif 380 381 cpuid = smp_processor_id(); 382 phys_id = hard_smp_processor_id(); 383 itc_master = time_keeper_id; 384 385 if (cpu_online(cpuid)) { 386 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n", 387 phys_id, cpuid); 388 BUG(); 389 } 390 391 fix_b0_for_bsp(); 392 393 /* 394 * numa_node_id() works after this. 395 */ 396 set_numa_node(cpu_to_node_map[cpuid]); 397 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid])); 398 399 ipi_call_lock_irq(); 400 spin_lock(&vector_lock); 401 /* Setup the per cpu irq handling data structures */ 402 __setup_vector_irq(cpuid); 403 notify_cpu_starting(cpuid); 404 cpu_set(cpuid, cpu_online_map); 405 per_cpu(cpu_state, cpuid) = CPU_ONLINE; 406 spin_unlock(&vector_lock); 407 ipi_call_unlock_irq(); 408 409 smp_setup_percpu_timer(); 410 411 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */ 412 413 #ifdef CONFIG_PERFMON 414 pfm_init_percpu(); 415 #endif 416 417 local_irq_enable(); 418 419 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { 420 /* 421 * Synchronize the ITC with the BP. Need to do this after irqs are 422 * enabled because ia64_sync_itc() calls smp_call_function_single(), which 423 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls 424 * local_bh_enable(), which bugs out if irqs are not enabled... 425 */ 426 Dprintk("Going to syncup ITC with ITC Master.\n"); 427 ia64_sync_itc(itc_master); 428 } 429 430 /* 431 * Get our bogomips. 432 */ 433 ia64_init_itm(); 434 435 /* 436 * Delay calibration can be skipped if new processor is identical to the 437 * previous processor. 438 */ 439 last_cpuinfo = cpu_data(cpuid - 1); 440 this_cpuinfo = local_cpu_data; 441 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq || 442 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq || 443 last_cpuinfo->features != this_cpuinfo->features || 444 last_cpuinfo->revision != this_cpuinfo->revision || 445 last_cpuinfo->family != this_cpuinfo->family || 446 last_cpuinfo->archrev != this_cpuinfo->archrev || 447 last_cpuinfo->model != this_cpuinfo->model) 448 calibrate_delay(); 449 local_cpu_data->loops_per_jiffy = loops_per_jiffy; 450 451 /* 452 * Allow the master to continue. 453 */ 454 cpu_set(cpuid, cpu_callin_map); 455 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid); 456 } 457 458 459 /* 460 * Activate a secondary processor. head.S calls this. 461 */ 462 int __cpuinit 463 start_secondary (void *unused) 464 { 465 /* Early console may use I/O ports */ 466 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); 467 #ifndef CONFIG_PRINTK_TIME 468 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id()); 469 #endif 470 efi_map_pal_code(); 471 cpu_init(); 472 preempt_disable(); 473 smp_callin(); 474 475 cpu_idle(); 476 return 0; 477 } 478 479 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs) 480 { 481 return NULL; 482 } 483 484 struct create_idle { 485 struct work_struct work; 486 struct task_struct *idle; 487 struct completion done; 488 int cpu; 489 }; 490 491 void __cpuinit 492 do_fork_idle(struct work_struct *work) 493 { 494 struct create_idle *c_idle = 495 container_of(work, struct create_idle, work); 496 497 c_idle->idle = fork_idle(c_idle->cpu); 498 complete(&c_idle->done); 499 } 500 501 static int __cpuinit 502 do_boot_cpu (int sapicid, int cpu) 503 { 504 int timeout; 505 struct create_idle c_idle = { 506 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle), 507 .cpu = cpu, 508 .done = COMPLETION_INITIALIZER(c_idle.done), 509 }; 510 511 /* 512 * We can't use kernel_thread since we must avoid to 513 * reschedule the child. 514 */ 515 c_idle.idle = get_idle_for_cpu(cpu); 516 if (c_idle.idle) { 517 init_idle(c_idle.idle, cpu); 518 goto do_rest; 519 } 520 521 schedule_work(&c_idle.work); 522 wait_for_completion(&c_idle.done); 523 524 if (IS_ERR(c_idle.idle)) 525 panic("failed fork for CPU %d", cpu); 526 527 set_idle_for_cpu(cpu, c_idle.idle); 528 529 do_rest: 530 task_for_booting_cpu = c_idle.idle; 531 532 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid); 533 534 set_brendez_area(cpu); 535 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0); 536 537 /* 538 * Wait 10s total for the AP to start 539 */ 540 Dprintk("Waiting on callin_map ..."); 541 for (timeout = 0; timeout < 100000; timeout++) { 542 if (cpu_isset(cpu, cpu_callin_map)) 543 break; /* It has booted */ 544 udelay(100); 545 } 546 Dprintk("\n"); 547 548 if (!cpu_isset(cpu, cpu_callin_map)) { 549 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid); 550 ia64_cpu_to_sapicid[cpu] = -1; 551 cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */ 552 return -EINVAL; 553 } 554 return 0; 555 } 556 557 static int __init 558 decay (char *str) 559 { 560 int ticks; 561 get_option (&str, &ticks); 562 return 1; 563 } 564 565 __setup("decay=", decay); 566 567 /* 568 * Initialize the logical CPU number to SAPICID mapping 569 */ 570 void __init 571 smp_build_cpu_map (void) 572 { 573 int sapicid, cpu, i; 574 int boot_cpu_id = hard_smp_processor_id(); 575 576 for (cpu = 0; cpu < NR_CPUS; cpu++) { 577 ia64_cpu_to_sapicid[cpu] = -1; 578 } 579 580 ia64_cpu_to_sapicid[0] = boot_cpu_id; 581 cpus_clear(cpu_present_map); 582 set_cpu_present(0, true); 583 set_cpu_possible(0, true); 584 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) { 585 sapicid = smp_boot_data.cpu_phys_id[i]; 586 if (sapicid == boot_cpu_id) 587 continue; 588 set_cpu_present(cpu, true); 589 set_cpu_possible(cpu, true); 590 ia64_cpu_to_sapicid[cpu] = sapicid; 591 cpu++; 592 } 593 } 594 595 /* 596 * Cycle through the APs sending Wakeup IPIs to boot each. 597 */ 598 void __init 599 smp_prepare_cpus (unsigned int max_cpus) 600 { 601 int boot_cpu_id = hard_smp_processor_id(); 602 603 /* 604 * Initialize the per-CPU profiling counter/multiplier 605 */ 606 607 smp_setup_percpu_timer(); 608 609 /* 610 * We have the boot CPU online for sure. 611 */ 612 cpu_set(0, cpu_online_map); 613 cpu_set(0, cpu_callin_map); 614 615 local_cpu_data->loops_per_jiffy = loops_per_jiffy; 616 ia64_cpu_to_sapicid[0] = boot_cpu_id; 617 618 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id); 619 620 current_thread_info()->cpu = 0; 621 622 /* 623 * If SMP should be disabled, then really disable it! 624 */ 625 if (!max_cpus) { 626 printk(KERN_INFO "SMP mode deactivated.\n"); 627 init_cpu_online(cpumask_of(0)); 628 init_cpu_present(cpumask_of(0)); 629 init_cpu_possible(cpumask_of(0)); 630 return; 631 } 632 } 633 634 void __devinit smp_prepare_boot_cpu(void) 635 { 636 cpu_set(smp_processor_id(), cpu_online_map); 637 cpu_set(smp_processor_id(), cpu_callin_map); 638 set_numa_node(cpu_to_node_map[smp_processor_id()]); 639 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 640 paravirt_post_smp_prepare_boot_cpu(); 641 } 642 643 #ifdef CONFIG_HOTPLUG_CPU 644 static inline void 645 clear_cpu_sibling_map(int cpu) 646 { 647 int i; 648 649 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu)) 650 cpu_clear(cpu, per_cpu(cpu_sibling_map, i)); 651 for_each_cpu_mask(i, cpu_core_map[cpu]) 652 cpu_clear(cpu, cpu_core_map[i]); 653 654 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE; 655 } 656 657 static void 658 remove_siblinginfo(int cpu) 659 { 660 int last = 0; 661 662 if (cpu_data(cpu)->threads_per_core == 1 && 663 cpu_data(cpu)->cores_per_socket == 1) { 664 cpu_clear(cpu, cpu_core_map[cpu]); 665 cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu)); 666 return; 667 } 668 669 last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0); 670 671 /* remove it from all sibling map's */ 672 clear_cpu_sibling_map(cpu); 673 } 674 675 extern void fixup_irqs(void); 676 677 int migrate_platform_irqs(unsigned int cpu) 678 { 679 int new_cpei_cpu; 680 struct irq_data *data = NULL; 681 const struct cpumask *mask; 682 int retval = 0; 683 684 /* 685 * dont permit CPEI target to removed. 686 */ 687 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) { 688 printk ("CPU (%d) is CPEI Target\n", cpu); 689 if (can_cpei_retarget()) { 690 /* 691 * Now re-target the CPEI to a different processor 692 */ 693 new_cpei_cpu = any_online_cpu(cpu_online_map); 694 mask = cpumask_of(new_cpei_cpu); 695 set_cpei_target_cpu(new_cpei_cpu); 696 data = irq_get_irq_data(ia64_cpe_irq); 697 /* 698 * Switch for now, immediately, we need to do fake intr 699 * as other interrupts, but need to study CPEI behaviour with 700 * polling before making changes. 701 */ 702 if (data && data->chip) { 703 data->chip->irq_disable(data); 704 data->chip->irq_set_affinity(data, mask, false); 705 data->chip->irq_enable(data); 706 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu); 707 } 708 } 709 if (!data) { 710 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu); 711 retval = -EBUSY; 712 } 713 } 714 return retval; 715 } 716 717 /* must be called with cpucontrol mutex held */ 718 int __cpu_disable(void) 719 { 720 int cpu = smp_processor_id(); 721 722 /* 723 * dont permit boot processor for now 724 */ 725 if (cpu == 0 && !bsp_remove_ok) { 726 printk ("Your platform does not support removal of BSP\n"); 727 return (-EBUSY); 728 } 729 730 if (ia64_platform_is("sn2")) { 731 if (!sn_cpu_disable_allowed(cpu)) 732 return -EBUSY; 733 } 734 735 cpu_clear(cpu, cpu_online_map); 736 737 if (migrate_platform_irqs(cpu)) { 738 cpu_set(cpu, cpu_online_map); 739 return -EBUSY; 740 } 741 742 remove_siblinginfo(cpu); 743 fixup_irqs(); 744 local_flush_tlb_all(); 745 cpu_clear(cpu, cpu_callin_map); 746 return 0; 747 } 748 749 void __cpu_die(unsigned int cpu) 750 { 751 unsigned int i; 752 753 for (i = 0; i < 100; i++) { 754 /* They ack this in play_dead by setting CPU_DEAD */ 755 if (per_cpu(cpu_state, cpu) == CPU_DEAD) 756 { 757 printk ("CPU %d is now offline\n", cpu); 758 return; 759 } 760 msleep(100); 761 } 762 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 763 } 764 #endif /* CONFIG_HOTPLUG_CPU */ 765 766 void 767 smp_cpus_done (unsigned int dummy) 768 { 769 int cpu; 770 unsigned long bogosum = 0; 771 772 /* 773 * Allow the user to impress friends. 774 */ 775 776 for_each_online_cpu(cpu) { 777 bogosum += cpu_data(cpu)->loops_per_jiffy; 778 } 779 780 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", 781 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); 782 } 783 784 static inline void __devinit 785 set_cpu_sibling_map(int cpu) 786 { 787 int i; 788 789 for_each_online_cpu(i) { 790 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) { 791 cpu_set(i, cpu_core_map[cpu]); 792 cpu_set(cpu, cpu_core_map[i]); 793 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) { 794 cpu_set(i, per_cpu(cpu_sibling_map, cpu)); 795 cpu_set(cpu, per_cpu(cpu_sibling_map, i)); 796 } 797 } 798 } 799 } 800 801 int __cpuinit 802 __cpu_up (unsigned int cpu) 803 { 804 int ret; 805 int sapicid; 806 807 sapicid = ia64_cpu_to_sapicid[cpu]; 808 if (sapicid == -1) 809 return -EINVAL; 810 811 /* 812 * Already booted cpu? not valid anymore since we dont 813 * do idle loop tightspin anymore. 814 */ 815 if (cpu_isset(cpu, cpu_callin_map)) 816 return -EINVAL; 817 818 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 819 /* Processor goes to start_secondary(), sets online flag */ 820 ret = do_boot_cpu(sapicid, cpu); 821 if (ret < 0) 822 return ret; 823 824 if (cpu_data(cpu)->threads_per_core == 1 && 825 cpu_data(cpu)->cores_per_socket == 1) { 826 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu)); 827 cpu_set(cpu, cpu_core_map[cpu]); 828 return 0; 829 } 830 831 set_cpu_sibling_map(cpu); 832 833 return 0; 834 } 835 836 /* 837 * Assume that CPUs have been discovered by some platform-dependent interface. For 838 * SoftSDV/Lion, that would be ACPI. 839 * 840 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP(). 841 */ 842 void __init 843 init_smp_config(void) 844 { 845 struct fptr { 846 unsigned long fp; 847 unsigned long gp; 848 } *ap_startup; 849 long sal_ret; 850 851 /* Tell SAL where to drop the APs. */ 852 ap_startup = (struct fptr *) start_ap; 853 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ, 854 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0); 855 if (sal_ret < 0) 856 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n", 857 ia64_sal_strerror(sal_ret)); 858 } 859 860 /* 861 * identify_siblings(cpu) gets called from identify_cpu. This populates the 862 * information related to logical execution units in per_cpu_data structure. 863 */ 864 void __devinit 865 identify_siblings(struct cpuinfo_ia64 *c) 866 { 867 long status; 868 u16 pltid; 869 pal_logical_to_physical_t info; 870 871 status = ia64_pal_logical_to_phys(-1, &info); 872 if (status != PAL_STATUS_SUCCESS) { 873 if (status != PAL_STATUS_UNIMPLEMENTED) { 874 printk(KERN_ERR 875 "ia64_pal_logical_to_phys failed with %ld\n", 876 status); 877 return; 878 } 879 880 info.overview_ppid = 0; 881 info.overview_cpp = 1; 882 info.overview_tpc = 1; 883 } 884 885 status = ia64_sal_physical_id_info(&pltid); 886 if (status != PAL_STATUS_SUCCESS) { 887 if (status != PAL_STATUS_UNIMPLEMENTED) 888 printk(KERN_ERR 889 "ia64_sal_pltid failed with %ld\n", 890 status); 891 return; 892 } 893 894 c->socket_id = (pltid << 8) | info.overview_ppid; 895 896 if (info.overview_cpp == 1 && info.overview_tpc == 1) 897 return; 898 899 c->cores_per_socket = info.overview_cpp; 900 c->threads_per_core = info.overview_tpc; 901 c->num_log = info.overview_num_log; 902 903 c->core_id = info.log1_cid; 904 c->thread_id = info.log1_tid; 905 } 906 907 /* 908 * returns non zero, if multi-threading is enabled 909 * on at least one physical package. Due to hotplug cpu 910 * and (maxcpus=), all threads may not necessarily be enabled 911 * even though the processor supports multi-threading. 912 */ 913 int is_multithreading_enabled(void) 914 { 915 int i, j; 916 917 for_each_present_cpu(i) { 918 for_each_present_cpu(j) { 919 if (j == i) 920 continue; 921 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) { 922 if (cpu_data(j)->core_id == cpu_data(i)->core_id) 923 return 1; 924 } 925 } 926 } 927 return 0; 928 } 929 EXPORT_SYMBOL_GPL(is_multithreading_enabled); 930