xref: /openbmc/linux/arch/ia64/kernel/smpboot.c (revision 22246614)
1 /*
2  * SMP boot-related support
3  *
4  * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  * Copyright (C) 2001, 2004-2005 Intel Corp
7  * 	Rohit Seth <rohit.seth@intel.com>
8  * 	Suresh Siddha <suresh.b.siddha@intel.com>
9  * 	Gordon Jin <gordon.jin@intel.com>
10  *	Ashok Raj  <ashok.raj@intel.com>
11  *
12  * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
13  * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
14  * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
15  *						smp_boot_cpus()/smp_commence() is replaced by
16  *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17  * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
18  * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19  * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20  *						Add multi-threading and multi-core detection
21  * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22  *						Setup cpu_sibling_map and cpu_core_map
23  */
24 
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/mm.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
42 
43 #include <asm/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
47 #include <asm/ia32.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/page.h>
53 #include <asm/pgalloc.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/ptrace.h>
57 #include <asm/sal.h>
58 #include <asm/system.h>
59 #include <asm/tlbflush.h>
60 #include <asm/unistd.h>
61 #include <asm/sn/arch.h>
62 
63 #define SMP_DEBUG 0
64 
65 #if SMP_DEBUG
66 #define Dprintk(x...)  printk(x)
67 #else
68 #define Dprintk(x...)
69 #endif
70 
71 #ifdef CONFIG_HOTPLUG_CPU
72 #ifdef CONFIG_PERMIT_BSP_REMOVE
73 #define bsp_remove_ok	1
74 #else
75 #define bsp_remove_ok	0
76 #endif
77 
78 /*
79  * Store all idle threads, this can be reused instead of creating
80  * a new thread. Also avoids complicated thread destroy functionality
81  * for idle threads.
82  */
83 struct task_struct *idle_thread_array[NR_CPUS];
84 
85 /*
86  * Global array allocated for NR_CPUS at boot time
87  */
88 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
89 
90 /*
91  * start_ap in head.S uses this to store current booting cpu
92  * info.
93  */
94 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
95 
96 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
97 
98 #define get_idle_for_cpu(x)		(idle_thread_array[(x)])
99 #define set_idle_for_cpu(x,p)	(idle_thread_array[(x)] = (p))
100 
101 #else
102 
103 #define get_idle_for_cpu(x)		(NULL)
104 #define set_idle_for_cpu(x,p)
105 #define set_brendez_area(x)
106 #endif
107 
108 
109 /*
110  * ITC synchronization related stuff:
111  */
112 #define MASTER	(0)
113 #define SLAVE	(SMP_CACHE_BYTES/8)
114 
115 #define NUM_ROUNDS	64	/* magic value */
116 #define NUM_ITERS	5	/* likewise */
117 
118 static DEFINE_SPINLOCK(itc_sync_lock);
119 static volatile unsigned long go[SLAVE + 1];
120 
121 #define DEBUG_ITC_SYNC	0
122 
123 extern void start_ap (void);
124 extern unsigned long ia64_iobase;
125 
126 struct task_struct *task_for_booting_cpu;
127 
128 /*
129  * State for each CPU
130  */
131 DEFINE_PER_CPU(int, cpu_state);
132 
133 /* Bitmasks of currently online, and possible CPUs */
134 cpumask_t cpu_online_map;
135 EXPORT_SYMBOL(cpu_online_map);
136 cpumask_t cpu_possible_map = CPU_MASK_NONE;
137 EXPORT_SYMBOL(cpu_possible_map);
138 
139 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
140 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
141 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
142 
143 int smp_num_siblings = 1;
144 
145 /* which logical CPU number maps to which CPU (physical APIC ID) */
146 volatile int ia64_cpu_to_sapicid[NR_CPUS];
147 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
148 
149 static volatile cpumask_t cpu_callin_map;
150 
151 struct smp_boot_data smp_boot_data __initdata;
152 
153 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
154 
155 char __initdata no_int_routing;
156 
157 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
158 
159 #ifdef CONFIG_FORCE_CPEI_RETARGET
160 #define CPEI_OVERRIDE_DEFAULT	(1)
161 #else
162 #define CPEI_OVERRIDE_DEFAULT	(0)
163 #endif
164 
165 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
166 
167 static int __init
168 cmdl_force_cpei(char *str)
169 {
170 	int value=0;
171 
172 	get_option (&str, &value);
173 	force_cpei_retarget = value;
174 
175 	return 1;
176 }
177 
178 __setup("force_cpei=", cmdl_force_cpei);
179 
180 static int __init
181 nointroute (char *str)
182 {
183 	no_int_routing = 1;
184 	printk ("no_int_routing on\n");
185 	return 1;
186 }
187 
188 __setup("nointroute", nointroute);
189 
190 static void fix_b0_for_bsp(void)
191 {
192 #ifdef CONFIG_HOTPLUG_CPU
193 	int cpuid;
194 	static int fix_bsp_b0 = 1;
195 
196 	cpuid = smp_processor_id();
197 
198 	/*
199 	 * Cache the b0 value on the first AP that comes up
200 	 */
201 	if (!(fix_bsp_b0 && cpuid))
202 		return;
203 
204 	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
205 	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
206 
207 	fix_bsp_b0 = 0;
208 #endif
209 }
210 
211 void
212 sync_master (void *arg)
213 {
214 	unsigned long flags, i;
215 
216 	go[MASTER] = 0;
217 
218 	local_irq_save(flags);
219 	{
220 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
221 			while (!go[MASTER])
222 				cpu_relax();
223 			go[MASTER] = 0;
224 			go[SLAVE] = ia64_get_itc();
225 		}
226 	}
227 	local_irq_restore(flags);
228 }
229 
230 /*
231  * Return the number of cycles by which our itc differs from the itc on the master
232  * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
233  * negative that it is behind.
234  */
235 static inline long
236 get_delta (long *rt, long *master)
237 {
238 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
239 	unsigned long tcenter, t0, t1, tm;
240 	long i;
241 
242 	for (i = 0; i < NUM_ITERS; ++i) {
243 		t0 = ia64_get_itc();
244 		go[MASTER] = 1;
245 		while (!(tm = go[SLAVE]))
246 			cpu_relax();
247 		go[SLAVE] = 0;
248 		t1 = ia64_get_itc();
249 
250 		if (t1 - t0 < best_t1 - best_t0)
251 			best_t0 = t0, best_t1 = t1, best_tm = tm;
252 	}
253 
254 	*rt = best_t1 - best_t0;
255 	*master = best_tm - best_t0;
256 
257 	/* average best_t0 and best_t1 without overflow: */
258 	tcenter = (best_t0/2 + best_t1/2);
259 	if (best_t0 % 2 + best_t1 % 2 == 2)
260 		++tcenter;
261 	return tcenter - best_tm;
262 }
263 
264 /*
265  * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
266  * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
267  * unaccounted-for errors (such as getting a machine check in the middle of a calibration
268  * step).  The basic idea is for the slave to ask the master what itc value it has and to
269  * read its own itc before and after the master responds.  Each iteration gives us three
270  * timestamps:
271  *
272  *	slave		master
273  *
274  *	t0 ---\
275  *             ---\
276  *		   --->
277  *			tm
278  *		   /---
279  *	       /---
280  *	t1 <---
281  *
282  *
283  * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
284  * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
285  * between the slave and the master is symmetric.  Even if the interconnect were
286  * asymmetric, we would still know that the synchronization error is smaller than the
287  * roundtrip latency (t0 - t1).
288  *
289  * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
290  * within one or two cycles.  However, we can only *guarantee* that the synchronization is
291  * accurate to within a round-trip time, which is typically in the range of several
292  * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
293  * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
294  * than half a micro second or so.
295  */
296 void
297 ia64_sync_itc (unsigned int master)
298 {
299 	long i, delta, adj, adjust_latency = 0, done = 0;
300 	unsigned long flags, rt, master_time_stamp, bound;
301 #if DEBUG_ITC_SYNC
302 	struct {
303 		long rt;	/* roundtrip time */
304 		long master;	/* master's timestamp */
305 		long diff;	/* difference between midpoint and master's timestamp */
306 		long lat;	/* estimate of itc adjustment latency */
307 	} t[NUM_ROUNDS];
308 #endif
309 
310 	/*
311 	 * Make sure local timer ticks are disabled while we sync.  If
312 	 * they were enabled, we'd have to worry about nasty issues
313 	 * like setting the ITC ahead of (or a long time before) the
314 	 * next scheduled tick.
315 	 */
316 	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
317 
318 	go[MASTER] = 1;
319 
320 	if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
321 		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
322 		return;
323 	}
324 
325 	while (go[MASTER])
326 		cpu_relax();	/* wait for master to be ready */
327 
328 	spin_lock_irqsave(&itc_sync_lock, flags);
329 	{
330 		for (i = 0; i < NUM_ROUNDS; ++i) {
331 			delta = get_delta(&rt, &master_time_stamp);
332 			if (delta == 0) {
333 				done = 1;	/* let's lock on to this... */
334 				bound = rt;
335 			}
336 
337 			if (!done) {
338 				if (i > 0) {
339 					adjust_latency += -delta;
340 					adj = -delta + adjust_latency/4;
341 				} else
342 					adj = -delta;
343 
344 				ia64_set_itc(ia64_get_itc() + adj);
345 			}
346 #if DEBUG_ITC_SYNC
347 			t[i].rt = rt;
348 			t[i].master = master_time_stamp;
349 			t[i].diff = delta;
350 			t[i].lat = adjust_latency/4;
351 #endif
352 		}
353 	}
354 	spin_unlock_irqrestore(&itc_sync_lock, flags);
355 
356 #if DEBUG_ITC_SYNC
357 	for (i = 0; i < NUM_ROUNDS; ++i)
358 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
359 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
360 #endif
361 
362 	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
363 	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
364 }
365 
366 /*
367  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
368  */
369 static inline void __devinit
370 smp_setup_percpu_timer (void)
371 {
372 }
373 
374 static void __cpuinit
375 smp_callin (void)
376 {
377 	int cpuid, phys_id, itc_master;
378 	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
379 	extern void ia64_init_itm(void);
380 	extern volatile int time_keeper_id;
381 
382 #ifdef CONFIG_PERFMON
383 	extern void pfm_init_percpu(void);
384 #endif
385 
386 	cpuid = smp_processor_id();
387 	phys_id = hard_smp_processor_id();
388 	itc_master = time_keeper_id;
389 
390 	if (cpu_online(cpuid)) {
391 		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
392 		       phys_id, cpuid);
393 		BUG();
394 	}
395 
396 	fix_b0_for_bsp();
397 
398 	lock_ipi_calllock();
399 	spin_lock(&vector_lock);
400 	/* Setup the per cpu irq handling data structures */
401 	__setup_vector_irq(cpuid);
402 	cpu_set(cpuid, cpu_online_map);
403 	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
404 	spin_unlock(&vector_lock);
405 	unlock_ipi_calllock();
406 
407 	smp_setup_percpu_timer();
408 
409 	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
410 
411 #ifdef CONFIG_PERFMON
412 	pfm_init_percpu();
413 #endif
414 
415 	local_irq_enable();
416 
417 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
418 		/*
419 		 * Synchronize the ITC with the BP.  Need to do this after irqs are
420 		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
421 		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
422 		 * local_bh_enable(), which bugs out if irqs are not enabled...
423 		 */
424 		Dprintk("Going to syncup ITC with ITC Master.\n");
425 		ia64_sync_itc(itc_master);
426 	}
427 
428 	/*
429 	 * Get our bogomips.
430 	 */
431 	ia64_init_itm();
432 
433 	/*
434 	 * Delay calibration can be skipped if new processor is identical to the
435 	 * previous processor.
436 	 */
437 	last_cpuinfo = cpu_data(cpuid - 1);
438 	this_cpuinfo = local_cpu_data;
439 	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
440 	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
441 	    last_cpuinfo->features != this_cpuinfo->features ||
442 	    last_cpuinfo->revision != this_cpuinfo->revision ||
443 	    last_cpuinfo->family != this_cpuinfo->family ||
444 	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
445 	    last_cpuinfo->model != this_cpuinfo->model)
446 		calibrate_delay();
447 	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
448 
449 #ifdef CONFIG_IA32_SUPPORT
450 	ia32_gdt_init();
451 #endif
452 
453 	/*
454 	 * Allow the master to continue.
455 	 */
456 	cpu_set(cpuid, cpu_callin_map);
457 	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
458 }
459 
460 
461 /*
462  * Activate a secondary processor.  head.S calls this.
463  */
464 int __cpuinit
465 start_secondary (void *unused)
466 {
467 	/* Early console may use I/O ports */
468 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
469 	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
470 	efi_map_pal_code();
471 	cpu_init();
472 	preempt_disable();
473 	smp_callin();
474 
475 	cpu_idle();
476 	return 0;
477 }
478 
479 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
480 {
481 	return NULL;
482 }
483 
484 struct create_idle {
485 	struct work_struct work;
486 	struct task_struct *idle;
487 	struct completion done;
488 	int cpu;
489 };
490 
491 void __cpuinit
492 do_fork_idle(struct work_struct *work)
493 {
494 	struct create_idle *c_idle =
495 		container_of(work, struct create_idle, work);
496 
497 	c_idle->idle = fork_idle(c_idle->cpu);
498 	complete(&c_idle->done);
499 }
500 
501 static int __cpuinit
502 do_boot_cpu (int sapicid, int cpu)
503 {
504 	int timeout;
505 	struct create_idle c_idle = {
506 		.work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
507 		.cpu	= cpu,
508 		.done	= COMPLETION_INITIALIZER(c_idle.done),
509 	};
510 
511  	c_idle.idle = get_idle_for_cpu(cpu);
512  	if (c_idle.idle) {
513 		init_idle(c_idle.idle, cpu);
514  		goto do_rest;
515 	}
516 
517 	/*
518 	 * We can't use kernel_thread since we must avoid to reschedule the child.
519 	 */
520 	if (!keventd_up() || current_is_keventd())
521 		c_idle.work.func(&c_idle.work);
522 	else {
523 		schedule_work(&c_idle.work);
524 		wait_for_completion(&c_idle.done);
525 	}
526 
527 	if (IS_ERR(c_idle.idle))
528 		panic("failed fork for CPU %d", cpu);
529 
530 	set_idle_for_cpu(cpu, c_idle.idle);
531 
532 do_rest:
533 	task_for_booting_cpu = c_idle.idle;
534 
535 	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
536 
537 	set_brendez_area(cpu);
538 	platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
539 
540 	/*
541 	 * Wait 10s total for the AP to start
542 	 */
543 	Dprintk("Waiting on callin_map ...");
544 	for (timeout = 0; timeout < 100000; timeout++) {
545 		if (cpu_isset(cpu, cpu_callin_map))
546 			break;  /* It has booted */
547 		udelay(100);
548 	}
549 	Dprintk("\n");
550 
551 	if (!cpu_isset(cpu, cpu_callin_map)) {
552 		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
553 		ia64_cpu_to_sapicid[cpu] = -1;
554 		cpu_clear(cpu, cpu_online_map);  /* was set in smp_callin() */
555 		return -EINVAL;
556 	}
557 	return 0;
558 }
559 
560 static int __init
561 decay (char *str)
562 {
563 	int ticks;
564 	get_option (&str, &ticks);
565 	return 1;
566 }
567 
568 __setup("decay=", decay);
569 
570 /*
571  * Initialize the logical CPU number to SAPICID mapping
572  */
573 void __init
574 smp_build_cpu_map (void)
575 {
576 	int sapicid, cpu, i;
577 	int boot_cpu_id = hard_smp_processor_id();
578 
579 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
580 		ia64_cpu_to_sapicid[cpu] = -1;
581 	}
582 
583 	ia64_cpu_to_sapicid[0] = boot_cpu_id;
584 	cpus_clear(cpu_present_map);
585 	cpu_set(0, cpu_present_map);
586 	cpu_set(0, cpu_possible_map);
587 	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
588 		sapicid = smp_boot_data.cpu_phys_id[i];
589 		if (sapicid == boot_cpu_id)
590 			continue;
591 		cpu_set(cpu, cpu_present_map);
592 		cpu_set(cpu, cpu_possible_map);
593 		ia64_cpu_to_sapicid[cpu] = sapicid;
594 		cpu++;
595 	}
596 }
597 
598 /*
599  * Cycle through the APs sending Wakeup IPIs to boot each.
600  */
601 void __init
602 smp_prepare_cpus (unsigned int max_cpus)
603 {
604 	int boot_cpu_id = hard_smp_processor_id();
605 
606 	/*
607 	 * Initialize the per-CPU profiling counter/multiplier
608 	 */
609 
610 	smp_setup_percpu_timer();
611 
612 	/*
613 	 * We have the boot CPU online for sure.
614 	 */
615 	cpu_set(0, cpu_online_map);
616 	cpu_set(0, cpu_callin_map);
617 
618 	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
619 	ia64_cpu_to_sapicid[0] = boot_cpu_id;
620 
621 	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
622 
623 	current_thread_info()->cpu = 0;
624 
625 	/*
626 	 * If SMP should be disabled, then really disable it!
627 	 */
628 	if (!max_cpus) {
629 		printk(KERN_INFO "SMP mode deactivated.\n");
630 		cpus_clear(cpu_online_map);
631 		cpus_clear(cpu_present_map);
632 		cpus_clear(cpu_possible_map);
633 		cpu_set(0, cpu_online_map);
634 		cpu_set(0, cpu_present_map);
635 		cpu_set(0, cpu_possible_map);
636 		return;
637 	}
638 }
639 
640 void __devinit smp_prepare_boot_cpu(void)
641 {
642 	cpu_set(smp_processor_id(), cpu_online_map);
643 	cpu_set(smp_processor_id(), cpu_callin_map);
644 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
645 }
646 
647 #ifdef CONFIG_HOTPLUG_CPU
648 static inline void
649 clear_cpu_sibling_map(int cpu)
650 {
651 	int i;
652 
653 	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
654 		cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
655 	for_each_cpu_mask(i, cpu_core_map[cpu])
656 		cpu_clear(cpu, cpu_core_map[i]);
657 
658 	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
659 }
660 
661 static void
662 remove_siblinginfo(int cpu)
663 {
664 	int last = 0;
665 
666 	if (cpu_data(cpu)->threads_per_core == 1 &&
667 	    cpu_data(cpu)->cores_per_socket == 1) {
668 		cpu_clear(cpu, cpu_core_map[cpu]);
669 		cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
670 		return;
671 	}
672 
673 	last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
674 
675 	/* remove it from all sibling map's */
676 	clear_cpu_sibling_map(cpu);
677 }
678 
679 extern void fixup_irqs(void);
680 
681 int migrate_platform_irqs(unsigned int cpu)
682 {
683 	int new_cpei_cpu;
684 	irq_desc_t *desc = NULL;
685 	cpumask_t 	mask;
686 	int 		retval = 0;
687 
688 	/*
689 	 * dont permit CPEI target to removed.
690 	 */
691 	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
692 		printk ("CPU (%d) is CPEI Target\n", cpu);
693 		if (can_cpei_retarget()) {
694 			/*
695 			 * Now re-target the CPEI to a different processor
696 			 */
697 			new_cpei_cpu = any_online_cpu(cpu_online_map);
698 			mask = cpumask_of_cpu(new_cpei_cpu);
699 			set_cpei_target_cpu(new_cpei_cpu);
700 			desc = irq_desc + ia64_cpe_irq;
701 			/*
702 			 * Switch for now, immediately, we need to do fake intr
703 			 * as other interrupts, but need to study CPEI behaviour with
704 			 * polling before making changes.
705 			 */
706 			if (desc) {
707 				desc->chip->disable(ia64_cpe_irq);
708 				desc->chip->set_affinity(ia64_cpe_irq, mask);
709 				desc->chip->enable(ia64_cpe_irq);
710 				printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
711 			}
712 		}
713 		if (!desc) {
714 			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
715 			retval = -EBUSY;
716 		}
717 	}
718 	return retval;
719 }
720 
721 /* must be called with cpucontrol mutex held */
722 int __cpu_disable(void)
723 {
724 	int cpu = smp_processor_id();
725 
726 	/*
727 	 * dont permit boot processor for now
728 	 */
729 	if (cpu == 0 && !bsp_remove_ok) {
730 		printk ("Your platform does not support removal of BSP\n");
731 		return (-EBUSY);
732 	}
733 
734 	if (ia64_platform_is("sn2")) {
735 		if (!sn_cpu_disable_allowed(cpu))
736 			return -EBUSY;
737 	}
738 
739 	cpu_clear(cpu, cpu_online_map);
740 
741 	if (migrate_platform_irqs(cpu)) {
742 		cpu_set(cpu, cpu_online_map);
743 		return (-EBUSY);
744 	}
745 
746 	remove_siblinginfo(cpu);
747 	cpu_clear(cpu, cpu_online_map);
748 	fixup_irqs();
749 	local_flush_tlb_all();
750 	cpu_clear(cpu, cpu_callin_map);
751 	return 0;
752 }
753 
754 void __cpu_die(unsigned int cpu)
755 {
756 	unsigned int i;
757 
758 	for (i = 0; i < 100; i++) {
759 		/* They ack this in play_dead by setting CPU_DEAD */
760 		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
761 		{
762 			printk ("CPU %d is now offline\n", cpu);
763 			return;
764 		}
765 		msleep(100);
766 	}
767  	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
768 }
769 #endif /* CONFIG_HOTPLUG_CPU */
770 
771 void
772 smp_cpus_done (unsigned int dummy)
773 {
774 	int cpu;
775 	unsigned long bogosum = 0;
776 
777 	/*
778 	 * Allow the user to impress friends.
779 	 */
780 
781 	for_each_online_cpu(cpu) {
782 		bogosum += cpu_data(cpu)->loops_per_jiffy;
783 	}
784 
785 	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
786 	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
787 }
788 
789 static inline void __devinit
790 set_cpu_sibling_map(int cpu)
791 {
792 	int i;
793 
794 	for_each_online_cpu(i) {
795 		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
796 			cpu_set(i, cpu_core_map[cpu]);
797 			cpu_set(cpu, cpu_core_map[i]);
798 			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
799 				cpu_set(i, per_cpu(cpu_sibling_map, cpu));
800 				cpu_set(cpu, per_cpu(cpu_sibling_map, i));
801 			}
802 		}
803 	}
804 }
805 
806 int __cpuinit
807 __cpu_up (unsigned int cpu)
808 {
809 	int ret;
810 	int sapicid;
811 
812 	sapicid = ia64_cpu_to_sapicid[cpu];
813 	if (sapicid == -1)
814 		return -EINVAL;
815 
816 	/*
817 	 * Already booted cpu? not valid anymore since we dont
818 	 * do idle loop tightspin anymore.
819 	 */
820 	if (cpu_isset(cpu, cpu_callin_map))
821 		return -EINVAL;
822 
823 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
824 	/* Processor goes to start_secondary(), sets online flag */
825 	ret = do_boot_cpu(sapicid, cpu);
826 	if (ret < 0)
827 		return ret;
828 
829 	if (cpu_data(cpu)->threads_per_core == 1 &&
830 	    cpu_data(cpu)->cores_per_socket == 1) {
831 		cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
832 		cpu_set(cpu, cpu_core_map[cpu]);
833 		return 0;
834 	}
835 
836 	set_cpu_sibling_map(cpu);
837 
838 	return 0;
839 }
840 
841 /*
842  * Assume that CPUs have been discovered by some platform-dependent interface.  For
843  * SoftSDV/Lion, that would be ACPI.
844  *
845  * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
846  */
847 void __init
848 init_smp_config(void)
849 {
850 	struct fptr {
851 		unsigned long fp;
852 		unsigned long gp;
853 	} *ap_startup;
854 	long sal_ret;
855 
856 	/* Tell SAL where to drop the APs.  */
857 	ap_startup = (struct fptr *) start_ap;
858 	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
859 				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
860 	if (sal_ret < 0)
861 		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
862 		       ia64_sal_strerror(sal_ret));
863 }
864 
865 /*
866  * identify_siblings(cpu) gets called from identify_cpu. This populates the
867  * information related to logical execution units in per_cpu_data structure.
868  */
869 void __devinit
870 identify_siblings(struct cpuinfo_ia64 *c)
871 {
872 	s64 status;
873 	u16 pltid;
874 	pal_logical_to_physical_t info;
875 
876 	status = ia64_pal_logical_to_phys(-1, &info);
877 	if (status != PAL_STATUS_SUCCESS) {
878 		if (status != PAL_STATUS_UNIMPLEMENTED) {
879 			printk(KERN_ERR
880 				"ia64_pal_logical_to_phys failed with %ld\n",
881 				status);
882 			return;
883 		}
884 
885 		info.overview_ppid = 0;
886 		info.overview_cpp  = 1;
887 		info.overview_tpc  = 1;
888 	}
889 
890 	status = ia64_sal_physical_id_info(&pltid);
891 	if (status != PAL_STATUS_SUCCESS) {
892 		if (status != PAL_STATUS_UNIMPLEMENTED)
893 			printk(KERN_ERR
894 				"ia64_sal_pltid failed with %ld\n",
895 				status);
896 		return;
897 	}
898 
899 	c->socket_id =  (pltid << 8) | info.overview_ppid;
900 
901 	if (info.overview_cpp == 1 && info.overview_tpc == 1)
902 		return;
903 
904 	c->cores_per_socket = info.overview_cpp;
905 	c->threads_per_core = info.overview_tpc;
906 	c->num_log = info.overview_num_log;
907 
908 	c->core_id = info.log1_cid;
909 	c->thread_id = info.log1_tid;
910 }
911 
912 /*
913  * returns non zero, if multi-threading is enabled
914  * on at least one physical package. Due to hotplug cpu
915  * and (maxcpus=), all threads may not necessarily be enabled
916  * even though the processor supports multi-threading.
917  */
918 int is_multithreading_enabled(void)
919 {
920 	int i, j;
921 
922 	for_each_present_cpu(i) {
923 		for_each_present_cpu(j) {
924 			if (j == i)
925 				continue;
926 			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
927 				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
928 					return 1;
929 			}
930 		}
931 	}
932 	return 0;
933 }
934 EXPORT_SYMBOL_GPL(is_multithreading_enabled);
935